The proposed research program is focused on the research and development of a widely tunable, high frequency (527 GHz) gyrotron oscillator for application to dynamic nuclear polarization solid-state nuclear magnetic resonance spectroscopy (DNP/SSNMR). In NMR, signal intensities are intrinsically low due to the small gyromagnetic ratios of the observed nuclei. DNP/NMR experiments can provide signal enhancements of 20 to 400, making DNP/NMR an important technique for elucidating the structure, function, and dynamic properties of biological systems. The full implementation of these techniques at high magnetic fields has been limited by two problems: 1.) the paucity of high power microwave sources that generate microwaves in the region 140 - 600 GHz and 2.) the fact that essentially all NMR magnets operate at fixed field in persistent mode, making it difficult to match the microwave frequency to the correct frequency in the EPR spectrum to optimize DNP. This proposal requests funding to develop a high-stability gyrotron oscillator that provides a solution to these two problems. The 10 to 50 Watt, 527 GHz gyrotron with a tunable bandwidth of 2 GHz will be used in conjunction with an 800 MHz NMR spectrometer, making it the highest magnetic field DNP/NMR spectrometer in the world. This spectrometer should provide dramatic signal enhancement at the very high magnetic fields where contemporary NMR research is currently being performed. The development of the 527 GHz gyrotron presents unique scientific and engineering challenges, including: greatly reduced gyrotron gain when operating at a low voltage and at the second harmonic gyro-frequency;high ohmic loss at high frequency;and the limited bore size of the superconducting magnet. Variation of beam parameters in a conventional gyrotron oscillator with a high Q cavity gives a frequency tuning range of less than 0.1 %, inadequate for this application. We propose to build the 527 GHz gyrotron with a novel tuning approach: namely, by varying the magnetic field and by utilizing a gyrotron cavity that couples a series of high order axial modes. The proposed 527 GHz gyrotron oscillator will benefit greatly from the highly successful results of our research on a tunable 330 GHz gyrotron oscillator. We have recently demonstrated more than 21 Watts of output power from a 330 GHz gyrotron over a tuning range of 1.2 GHz. Tuning was accomplished by varying the magnetic field, the voltage and the cavity temperature. The tuning was thus accomplished without having to provide mechanical tuning of the resonator, assuring more stable, simple, and convenient operating conditions. The proposal presents a complete design of a 527 GHz gyrotron showing that the predicted power level and tuning range are feasible. During year one of the proposed research, we will complete wide-range testing, optimization and commissioning of the tunable 330 GHz gyrotron while designing and ordering long lead time items for the 527 GHz gyrotron. Funding of this continuation proposal is crucial to maintaining progress in this important field of NMR spectroscopy of biomolecules.

Public Health Relevance

The proposed research is directed at building a high frequency microwave source that will greatly enhance the sensitivity of Nuclear Magnetic Resonance (NMR) spectrometers and will therefore dramatically speed up spectral acquisition in NMR experiments on biological solids. The novel gyrotron microwave source will be the highest frequency source in the world for use in enhanced NMR research and, when applied to an 800 MHz NMR spectrometer, should reveal unique molecular structure information. The improved techniques will lead to increased understanding of the structure of amyloid and membrane proteins which are key to understanding their role in biological systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB004866-08
Application #
8508938
Study Section
Enabling Bioanalytical and Biophysical Technologies Study Section (EBT)
Program Officer
Sastre, Antonio
Project Start
2005-04-01
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
8
Fiscal Year
2013
Total Cost
$523,480
Indirect Cost
$157,521
Name
Massachusetts Institute of Technology
Department
Type
Organized Research Units
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Schaub, S C; Shapiro, M A; Temkin, R J (2016) Simple Expressions for the Design of Linear Tapers in Overmoded Corrugated Waveguides. J Infrared Millim Terahertz Waves 37:100-110
Kowalski, Elizabeth J; Shapiro, Michael A; Temkin, Richard J (2014) Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 42:29-37
Lewis, Samantha M; Nanni, Emilio A; Temkin, Richard J (2014) Direct Machining of Low-Loss THz Waveguide Components With an RF Choke. IEEE Microw Wirel Compon Lett 24:842-844
Jawla, Sudheer K; Shapiro, Michael A; Idei, Hiroshi et al. (2014) Corrugated Waveguide Mode Content Analysis Using Irradiance Moments. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 42:3358-3364
Jawla, Sudheer; Ni, Qing Zhe; Barnes, Alexander et al. (2013) Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy. J Infrared Millim Terahertz Waves 34:42-52
Nanni, E A; Lewis, S M; Shapiro, M A et al. (2013) Photonic-band-gap traveling-wave gyrotron amplifier. Phys Rev Lett 111:235101
Ni, Qing Zhe; Daviso, Eugenio; Can, Thach V et al. (2013) High frequency dynamic nuclear polarization. Acc Chem Res 46:1933-41
Barnes, Alexander B; Nanni, Emilio A; Herzfeld, Judith et al. (2012) A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization. J Magn Reson 221:147-53
Nanni, Emilio A; Jawla, Sudheer K; Shapiro, Michael A et al. (2012) Low-Loss Transmission Lines for High-Power Terahertz Radiation. J Infrared Millim Terahertz Waves 33:695-714
Barnes, Alexander B; Markhasin, Evgeny; Daviso, Eugenio et al. (2012) Dynamic nuclear polarization at 700 MHz/460 GHz. J Magn Reson 224:1-7

Showing the most recent 10 out of 29 publications