Higher field (7T) MRI offers many potential advantages to clinical and scientific studies, including increased sensitivity and in many cases improved contrast. Demonstration of this potential in specialized studies has resulted in the proliferation of 7T and even 9.4T human scanners. There are, however, outstanding methodological challenges to bringing these systems from the research to the clinical arena. One of the most limiting issues is the ability to achieve uniform image contrast over the body. The source of this confound is the shortened RF wavelength in biological tissues leading to spatial inhomogeneities of the transmit B1 field, which, in turn lead to contrast variations in many sequences. In a conventional T1 weighted volume acquisition, the image contrast can change over an order of magnitude over the head at 7T. RF excitation in the presence of time-varying gradients offers the potential of multi-dimensional selective excitation. In this scheme, the excitation is shaped to mitigate the B1 pattern measured in the head. The principal challenge is to encode the 3D excitation in a short enough time to be useful for a wide variety of sequences, including 2D slice selective sequences as well as 3D (non-selective) acquisitions. We propose a development program to test the ability the spatially shaped pulses to mitigate B1 inhomogeniety in the head at 7T.
Our first aim i s to develop the RF transmit arrays needed to decrease the length of time spent encoding these pulses using the transmit SENSE method.
Our second aim i s to improve the methods used for calculating the accelerated pulses and test the limits of the transmit SENSE approach in the head at 7T, including high flip angle excitations.
Our third aim i s to build the methodology that will be needed to safely and accurately monitor local SAR levels for transmit arrays and assess the SAR penalty associated with constructive interference from the E fields of the multiple transmit channels.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB006847-03
Application #
7625023
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Liu, Guoying
Project Start
2007-09-15
Project End
2011-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
3
Fiscal Year
2009
Total Cost
$383,568
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Vinding, Mads S; Guérin, Bastien; Vosegaard, Thomas et al. (2017) Local SAR, global SAR, and power-constrained large-flip-angle pulses with optimal control and virtual observation points. Magn Reson Med 77:374-384
Golestanirad, Laleh; Iacono, Maria Ida; Keil, Boris et al. (2017) Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants. Neuroimage 147:577-588
Golestanirad, Laleh; Keil, Boris; Angelone, Leonardo M et al. (2017) Feasibility of using linearly polarized rotating birdcage transmitters and close-fitting receive arrays in MRI to reduce SAR in the vicinity of deep brain simulation implants. Magn Reson Med 77:1701-1712
Mahmood, Zohaib; McDaniel, Patrick; Guérin, Bastien et al. (2016) General design approach and practical realization of decoupling matrices for parallel transmission coils. Magn Reson Med 76:329-39
Guérin, Bastien; Stockmann, Jason P; Baboli, Mehran et al. (2016) Robust time-shifted spoke pulse design in the presence of large B0 variations with simultaneous reduction of through-plane dephasing, B1+ effects, and the specific absorption rate using parallel transmission. Magn Reson Med 76:540-54
Tian, Qiyuan; Rokem, Ariel; Folkerth, Rebecca D et al. (2016) Q-space truncation and sampling in diffusion spectrum imaging. Magn Reson Med 76:1750-1763
Davids, Mathias; Schad, Lothar R; Wald, Lawrence L et al. (2016) Fast three-dimensional inner volume excitations using parallel transmission and optimized k-space trajectories. Magn Reson Med 76:1170-82
Huang, Susie Y; Tobyne, Sean M; Nummenmaa, Aapo et al. (2016) Characterization of Axonal Disease in Patients with Multiple Sclerosis Using High-Gradient-Diffusion MR Imaging. Radiology 280:244-51
Villena, Jorge Fernandez; Polimeridis, Athanasios G; Eryaman, Yigitcan et al. (2016) Fast Electromagnetic Analysis of MRI Transmit RF Coils Based on Accelerated Integral Equation Methods. IEEE Trans Biomed Eng 63:2250-2261
Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan et al. (2016) Parallel transmission pulse design with explicit control for the specific absorption rate in the presence of radiofrequency errors. Magn Reson Med 75:2493-504

Showing the most recent 10 out of 70 publications