Overview: Although magnetic resonance imaging (MRI) has shown clinical accuracy in detecting many types of breast cancer, higher-resolution MRI would potentially improve detectability of small lesions, diagnosis of ductal carcinoma in situ, and specificity of MRI for other cancers. Numerous recent advances in MRI technology will enable higher resolution exams, but have not yet been applied to fully optimize imaging for breast cancer. We propose to develop, implement and validate breast MRI methods with very high spatial-resolution at 3T. Significance: Although breast MRI has recently been shown to be cost-effective in screening high risk patients or patients with a contralateral breast cancer, its sensitivity to ductal carcinoma in situ, it's ability to assess small lesions, and its positive predictive value limit increased use. Higher resolution MRI could address all of these limitations, providing a more accurate tool for assessment of breast cancer. Improved specificity could reduce the rate of unnecessary biopsy while also making MRI effective for screening lower-risk patients. Increased sensitivity for small lesions could allow earlier detection of cancer resulting in increased survival rates and a reduced screening frequency. Approach: As a first aim, we will develop fat-suppressed ultra-high-resolution 3D MRI pulse sequences for T1-weighted and T2-weighted imaging at 3T, combining numerous advances in excitation pulse design, imaging and reconstruction. We will test the clinical utility of ultra-high-resolution imaging in a small patient study. Next, as a second aim, we will extend the high-resolution imaging methods for full bilateral breast coverage using high-density phased-array coils fitted specifically to the patient in order to provide maximal signal levels, volumetric coverage and parallel imaging capability. We will also apply software and hardware techniques to reduce sensitivity to magnetic field variations at 3T. The overall bilateral techniques will be tested in a second patient study to assess the utility of the complete high-resolution whole-breast imaging protocol. Project Narrative Magnetic resonance imaging (MRI) is an accurate method to detect breast cancer, and has recently been shown to be cost-effective in screening high-risk patients. This research will develop much higher resolution MRI, allowing it to better classify small lesions, prevent unnecessary biopsy, and detect cancer earlier.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Liu, Guoying
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Taviani, Valentina; Alley, Marcus T; Banerjee, Suchandrima et al. (2017) High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 77:209-220
Horst, Kathleen C; Fero, Katherine E; Hancock, Steven L et al. (2016) Breast Imaging in Women Previously Irradiated for Hodgkin Lymphoma. Am J Clin Oncol 39:114-9
Yoruk, Umit; Saranathan, Manojkumar; Loening, Andreas M et al. (2016) High temporal resolution dynamic MRI and arterial input function for assessment of GFR in pediatric subjects. Magn Reson Med 75:1301-11
Kang, Bong Joo; Lipson, Jafi Alyssa; Planey, Katie RoseMary et al. (2015) Rim sign in breast lesions on diffusion-weighted magnetic resonance imaging: diagnostic accuracy and clinical usefulness. J Magn Reson Imaging 41:616-23
Barentsz, Maarten W; Taviani, Valentina; Chang, Jung M et al. (2015) Assessment of tumor morphology on diffusion-weighted (DWI) breast MRI: Diagnostic value of reduced field of view DWI. J Magn Reson Imaging 42:1656-65
Clarke, Sharon E; Saranathan, Manojkumar; Rettmann, Dan W et al. (2015) High resolution multi-arterial phase MRI improves lesion contrast in chronic liver disease. Clin Invest Med 38:E90-9
Quist, Brady; Hargreaves, Brian A; Daniel, Bruce L et al. (2015) Balanced SSFP Dixon imaging with banding-artifact reduction at 3 Tesla. Magn Reson Med 74:706-15
Saranathan, Manojkumar; Rettmann, Dan W; Hargreaves, Brian A et al. (2014) Variable spatiotemporal resolution three-dimensional Dixon sequence for rapid dynamic contrast-enhanced breast MRI. J Magn Reson Imaging 40:1392-9
Moran, Catherine J; Hargreaves, Brian A; Saranathan, Manojkumar et al. (2014) 3D T2-weighted spin echo imaging in the breast. J Magn Reson Imaging 39:332-8
Han, Misung; Cunningham, Charles H; Pauly, John M et al. (2014) Homogenous fat suppression for bilateral breast imaging using independent shims. Magn Reson Med 71:1511-7

Showing the most recent 10 out of 28 publications