Technologies that can help make accurate, objective and automated decisions to aid the pathologist are sorely needed in clinical practice to improve accuracy and contain costs. The major goal of this project is to provide a practical imaging instrument for clinical and research use that can be operated by any trained person in pathology laboratories. The approach is based, first, on developing novel instrumentation and analytical methods for robust discrete frequency infrared (DF-IR) spectroscopic imaging. The instrument presents a departure from the current state of the art. Second, the approach is made practical by enabling the incorporation of uncooled detectors via advanced control algorithms. Last, the developed instrument is tested in a clinical setting and results that will lead to clinical trials will be obtained. If the project is successful, it has the potential to transform decision-making for patients and alter the standard practice of histologic assessment in research. We specifically target two areas: the rapid detection of important biopsy slides in prostate cancer (those that are diagnostically valid and contain cancer) and rapid detection of cancer in breast tissues. Both are accomplished without any dyes, stains or human supervision.

Public Health Relevance

The first goal of this project is to provide a new chemical imaging instrument for clinical and research use that can be operated by any trained person in pathology laboratories. The project has the potential to transform diagnosis and therapy decisions for patients by enabling early decisions and accurate diagnoses without dyes, stains or human input. Proposing to develop the processes for breast and prostate cancer, the technology could impact over 2 million people screened positive for cancer every year. If successful, establishment of the instrumentation and analytical methods here would alter the standard practice in histologic assessment of future research in cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB009745-03
Application #
8269999
Study Section
Instrumentation and Systems Development Study Section (ISD)
Program Officer
Conroy, Richard
Project Start
2010-05-01
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
3
Fiscal Year
2012
Total Cost
$320,720
Indirect Cost
$104,450
Name
University of Illinois Urbana-Champaign
Department
None
Type
Organized Research Units
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Mayerich, David; van Dijk, Thomas; Walsh, Michael J et al. (2014) On the importance of image formation optics in the design of infrared spectroscopic imaging systems. Analyst 139:4031-6
Baker, Matthew J; Trevisan, JĂșlio; Bassan, Paul et al. (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9:1771-91
Holton, Sarah E; Bergamaschi, Anna; Katzenellenbogen, Benita S et al. (2014) Integration of molecular profiling and chemical imaging to elucidate fibroblast-microenvironment impact on cancer cell phenotype and endocrine resistance in breast cancer. PLoS One 9:e96878
van Dijk, Thomas; Mayerich, David; Bhargava, Rohit et al. (2013) Rapid spectral-domain localization. Opt Express 21:12822-30
Reddy, Rohith K; Walsh, Michael J; Schulmerich, Matthew V et al. (2013) High-definition infrared spectroscopic imaging. Appl Spectrosc 67:93-105
Kodali, Anil K; Schulmerich, Matthew; Ip, Jason et al. (2010) Narrowband midinfrared reflectance filters using guided mode resonance. Anal Chem 82:5697-706