Stem cells have tremendous potential in regenerative medicine applications. The generation of induced pluripotent stem cells (iPSCs) bypasses the ethical and immune rejection issues of human embryonic stem cells (hESCs), and provides an unlimited cell source for tissue repair. However, the differentiation and the therapeutic effects of iPSC-derived stem cells have not been well characterized in vitro and in vivo. Here we propose to investigate the differentiation and therapeutic effects of iPSC- derived neural crest stem cells (NCSCs). NCSCs can be derived from ESCs and iPSCs, and can generate many cell types (neural cells, vascular cells, mesenchymal cells, endocrine cells) of all three germ layers, which make it a valuable stem cell source and an ideal model system to study the lineage commitment and therapeutic potential of multipotent stem cells. In addition, nanofibrous biomaterials will be used as scaffolds to deliver stem cells and provide a well-controlled and tissue-specific microenvironment for the investigations of NCSC differentiation and tissue regeneration in vivo. We hypothesize that iPSC-derived NCSC is a valuable cell source for the regeneration of neural, vascular and other tissues and that the differentiation of NCSCs in vivo depends on tissue-specific microenvironment. To test our hypothesis, three Specific Aims are proposed: (1) To derive and characterize NCSCs from iPSCs and ESCs and investigate their differentiation in vitro, (2) To determine the differentiation and therapeutic potential of NCSCs in nanofibrous nerve conduit for peripheral nerve regeneration in vivo, and (3) To determine the differentiation and therapeutic potential of NCSCs in nanofibrous vascular grafts for vascular regeneration in vivo. We will take a multidisciplinary approach and integrate the knowledge and technologies from stem cell biology, biomaterials, tissue engineering, nanotechnology and medicine. The accomplishment of this project will advance our understanding on the differentiation and therapeutic potential of iPSCs and NCSCs, and provide a rational basis for the use of iPSCs and NCSCs, in combination with nanofibrous scaffolds, in the regeneration of neural and vascular tissues. In addition, the research on iPSC-NCSCs will have impact on the therapies for many other diseases such as demyelinating disorders, congenital heart failure, spina bifida, arthritis, osteoporosis and endocrine disorders.

Public Health Relevance

In this project we will explore the differentiation and therapeutic potential of induced pluripotent stem (iPS) cells. The iPS cell-derived multipotent neural crest stem cells will be characterized and combined with nanofibrous scaffolds for peripheral nerve and vascular repair. The accomplishment of this project will break new grounds of using iPS cells for regenerative medicine applications and establish novel technologies and cell sources for therapies.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Bioengineering, Technology and Surgical Sciences Study Section (BTSS)
Program Officer
Hunziker, Rosemarie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Berkeley
Biomedical Engineering
Schools of Engineering
United States
Zip Code
Yuan, Falei; Wang, Dong; Xu, Kang et al. (2017) Contribution of Vascular Cells to Neointimal Formation. PLoS One 12:e0168914
Wong, Sze Yue; Soto, Jennifer; Li, Song (2017) Biophysical regulation of cell reprogramming. Curr Opin Chem Eng 15:95-101
Henry, Jeffrey J D; Yu, Jian; Wang, Aijun et al. (2017) Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering. Biofabrication 9:035007
Huang, Ching-Wen; Huang, Wen-Chin; Qiu, Xuefeng et al. (2017) The Differentiation Stage of Transplanted Stem Cells Modulates Nerve Regeneration. Sci Rep 7:17401
Sia, Junren; Yu, Pengzhi; Srivastava, Deepak et al. (2016) Effect of biophysical cues on reprogramming to cardiomyocytes. Biomaterials 103:1-11
Sia, Junren; Sun, Raymond; Chu, Julia et al. (2016) Dynamic culture improves cell reprogramming efficiency. Biomaterials 92:36-45
Pu, Juan; Yuan, Falei; Li, Song et al. (2015) Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo. Acta Biomater 13:131-41
Janairo, Randall Raphael R; Zhu, Yiqian; Chen, Timothy et al. (2014) Mucin covalently bonded to microfibers improves the patency of vascular grafts. Tissue Eng Part A 20:285-93
Li, Song; Sengupta, Debanti; Chien, Shu (2014) Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip Rev Syst Biol Med 6:61-76
Sengupta, Debanti; Waldman, Stephen D; Li, Song (2014) From in vitro to in situ tissue engineering. Ann Biomed Eng 42:1537-45

Showing the most recent 10 out of 31 publications