The radiation exposure resulting from medical imaging has become a public safety concern. Dose reduction for pediatric patients is particularly important since such patients are at increased risk owing to the enhanced radiosensitivity of their tissues and the longer time-period over which stochastic radiation effects may manifest. The objective of this proposal is to develop and validate techniques that can be used to minimize the radiation exposure to pediatric patients undergoing molecular imaging procedures without adversely impacting the diagnostic quality of the images. The hypothesis of this proposal is that it is possible to reduce the absorbed dose received by pediatric molecular imaging patients without compromising the image quality of the study by: (1) individualizing the amount of administered activity and the image acquisition time to better account for the effects that patient-specific body size and shape may have on the detector count-rate density;(2) adjusting acquisition parameters to account for the smaller field of view in pediatric imaging;(3) improving image reconstruction methods to enable image generation from these lower-count, smaller field-of-view images. In current clinical practice, dosing for pediatric molecular imaging has focused on rule-of-thumb approaches to identifying the activity administered to children for different imaging procedures. By using state-of-the-art simulation, image quality evaluation and radiation dosimetry tools, the work proposed in this grant application will examine dose reduction methods in a much more rigorous and, scientifically validated manner. This approach will lead to clinically implementable dose reduction techniques for pediatric (and potentially adult) molecular imaging on par with national efforts to reduce doses in pediatric and adult CT and fluoroscopically guided interventions without adversely impacting the diagnostic quality of the images.

Public Health Relevance

The radiation exposure resulting from medical imaging has become a public safety concern. The objective of this proposal is to develop and validate techniques that can be used to reduce the radiation exposure to pediatric patients undergoing molecular imaging procedures using methods that retain the diagnostic quality of the images.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB013558-03
Application #
8628116
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Sastre, Antonio
Project Start
2012-03-01
Project End
2016-02-29
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
3
Fiscal Year
2014
Total Cost
$472,741
Indirect Cost
$121,780
Name
Johns Hopkins University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Elshahaby, Fatma E A; Ghaly, Michael; Jha, Abhinav K et al. (2016) Factors affecting the normality of channel outputs of channelized model observers: an investigation using realistic myocardial perfusion SPECT images. J Med Imaging (Bellingham) 3:015503
O'Reilly, Shannon E; Plyku, Donika; Sgouros, George et al. (2016) A risk index for pediatric patients undergoing diagnostic imaging with (99m)Tc-dimercaptosuccinic acid that accounts for body habitus. Phys Med Biol 61:2319-32
Khamwan, Kitiwat; Plyku, Donika; O'Reilly, Shannon E et al. (2016) Pharmacokinetic modeling of [(18)F]fluorodeoxyglucose (FDG) for premature infants, and newborns through 5-year-olds. EJNMMI Res 6:28
Jha, Abhinav K; Frey, Eric C (2015) Estimating ROI activity concentration with photon-processing and photon-counting SPECT imaging systems. Proc SPIE Int Soc Opt Eng 9412:94120R
Jha, Abhinav K; Barrett, Harrison H; Frey, Eric C et al. (2015) Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions. Phys Med Biol 60:7359-85
Jha, Abhinav K; Song, Na; Caffo, Brian et al. (2015) Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth. Proc SPIE Int Soc Opt Eng 9416:94161K
Rowe, Steven P; Vicente, Esther; Anizan, Nadège et al. (2015) Repeatability of Radiotracer Uptake in Normal Abdominal Organs with ¹¹¹In-Pentetreotide Quantitative SPECT/CT. J Nucl Med 56:985-8
Sgouros, George; Hobbs, Robert F (2014) Dosimetry for radiopharmaceutical therapy. Semin Nucl Med 44:172-8
Sgouros, George; Frey, Eric C; Bolch, Wesley E et al. (2011) An approach for balancing diagnostic image quality with cancer risk: application to pediatric diagnostic imaging of 99mTc-dimercaptosuccinic acid. J Nucl Med 52:1923-9