An arteriovenous malformation (AVM) is a congenital vascular abnormality in the brain with direct connections between arteries and veins such that blood bypasses brain tissue. The primary presentation of AVM is intracranial hemorrhage which occurs in as many as 40-70% of patients and may lead to permanent injury or death. As the gold standard for the detection and evaluation of vascular malformations, conventional digital subtraction angiography (DSA) is an invasive procedure bearing risks of neurological complications, as well as risks of ionizing radiation and iodinated contrast. While superior for th delineation of vascular anatomy, DSA is not capable of providing quantitative assessments of blood flow or degree of shunt in an AVM. Existing MR techniques are suboptimal for quantifying the hemodynamics of vascular malformation, and the complexity of the vascular architecture is often inadequately demonstrated. Arterial spin labeling (ASL) is a noninvasive MRI technique that utilizes magnetically labeled blood water as an endogenous tracer for perfusion measurements. Due to the direct shunt between arteries and veins in AVMs, the labeled blood spins behave as an intravascular contrast agent, and can be utilized for visualizing the dynamic blood flow through feeding arteries, nidus and draining veins of an AVM. Furthermore, hemodynamic parameters such as blood flow, blood volume and mean transit time can be quantified by adapting the standard tracer kinetic model. We have recently developed such an entirely noninvasive and quantitative 4-D time-resolved dMRA technique by combining ASL with a segmented cine multiphase TrueFISP sequence. The goal of the present proposal is to further develop, validate and evaluate the clinical utility of 4-D non-contrast dMRA in assessing both the vascular architecture and hemodynamics of AVMs.
In Aim 1, further technical development and optimization of 4-D non-contrast dMRA will be performed, including implementation of multi-bolus pulsed and pseudo-continuous ASL (pCASL) with vessel selective labeling;Cartesian sampling with view sharing;dynamic golden angle radial acquisition with k-space weighted image contrast (KWIC);in conjunction with parallel imaging and potentially compressed sensing.
In Aim 2, validation of methods for quantifying blood flow and degree of shunt through AVMs using 4- D dMRA will be carried out by comparison with phase-contrast (PC) MRI and pCASL perfusion MRI. Finally in Aim 3, the clinical utility of the proposed 4-D dMRA technique will be evaluated in AVM patients by comparison with the reference standard of DSA, time-of-flight (TOF) MRA and T2 weighted MRI. Furthermore, repeated scans will be performed to test whether 4-D dMRA is able to detect changes of blood flow and degree of shunt through AVMs pre and post treatments. The proposed 4-D dMRA is expected to provide alternative and complementary approaches for conventional DSA and MRA/MRI techniques in quantitative assessments of hemodynamics in AVMs. It will be useful not only for evaluation of AVMs, but also for other cerebrovascular disorders such as steno-occlusive diseases and cerebral aneurysms. !

Public Health Relevance

Arteriovenous malformation (AVM) causes bleeding in the brain in 40-70% of patients and may lead to permanent injury or death. The gold standard for the detection and evaluation of AVMs is digital subtraction angiography (DSA) which is an invasive procedure involving X-ray and iodinated contrast agents. The goal of this project is to develop a noninvasive time-resolved dynamic MR angiography technique for the evaluation of AVMs. Once validated, this technique will reduce the use of DSA in AVM patients, thereby alleviating associated risks and stress. !

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Liu, Guoying
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Kandel, Benjamin M; Wang, Danny J J; Gee, James C et al. (2015) Eigenanatomy: sparse dimensionality reduction for multi-modal medical image analysis. Methods 73:43-53
Jann, Kay; Gee, Dylan G; Kilroy, Emily et al. (2015) Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks. Neuroimage 106:111-22
Smith, Robert X; Yan, Lirong; Wang, Danny J J (2014) Multiple time scale complexity analysis of resting state FMRI. Brain Imaging Behav 8:284-91
Yu, S L; Wang, R; Wang, R et al. (2014) Accuracy of vessel-encoded pseudocontinuous arterial spin-labeling in identification of feeding arteries in patients with intracranial arteriovenous malformations. AJNR Am J Neuroradiol 35:65-71
Kilroy, Emily; Apostolova, Liana; Liu, Collin et al. (2014) Reliability of two-dimensional and three-dimensional pseudo-continuous arterial spin labeling perfusion MRI in elderly populations: comparison with 15O-water positron emission tomography. J Magn Reson Imaging 39:931-9
Li, Chun-Xia; Patel, Sudeep; Wang, Danny J J et al. (2014) Effect of high dose isoflurane on cerebral blood flow in macaque monkeys. Magn Reson Imaging 32:956-60
Wang, Rui; Yu, Songlin; Alger, Jeffry R et al. (2014) Multi-delay arterial spin labeling perfusion MRI in moyamoya disease--comparison with CT perfusion imaging. Eur Radiol 24:1135-44
Tak, Sungho; Wang, Danny J J; Polimeni, Jonathan R et al. (2014) Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal. Neuroimage 84:672-80
Wang, Danny J J; Alger, Jeffry R; Qiao, Joe X et al. (2013) Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke - Comparison with dynamic susceptibility contrast enhanced perfusion imaging. Neuroimage Clin 3:1-7
Yan, Lirong; Salamon, Noriko; Wang, Danny J J (2013) Time-resolved noncontrast enhanced 4-D dynamic magnetic resonance angiography using multibolus TrueFISP-based spin tagging with alternating radiofrequency (TrueSTAR). Magn Reson Med :

Showing the most recent 10 out of 13 publications