Most cancer deaths are caused by metastasis, a process whereby primary tumor cells spread to non-adjacent organs mainly by penetrating the walls of blood vessels and circulating through the bloodstream. Patients would have a much greater opportunity for long-term survival if these circulating tumor cells (CTCs) could be sensitively and specifically detected to guide disease management. However, CTCs are too rare for easy detection and quantification. Photoacoustic (PA) imaging following magnetic capture of circulating tumor cells has been proposed to address this problem, but the method is limited in contrast specificity due to strong PA signals from blood. Magnetomotive photoacoustic imaging (mmPA), a new molecular imaging modality developed in our group, introduced dynamic manipulation into traditional PA imaging. Similar to conventional PA, mmPA retains the high resolution and penetration of ultrasound (US), and can measure optical absorption in tissue. Unlike conventional PA, magnetomotive manipulation with simultaneous US/PA imaging of agents incorporating magnetic nanoparticles (MNPs) enables direct visualization of the signal generating object and can dramatically reduce background signals from strong optical absorbers such as blood. We hypothesize that biologically targeted, coupled magnetic nanoparticles can be used to identify, accumulate, and manipulate CTCs circulating in the vasculature using a combination of magnetic trapping and mmPA imaging. If successful, this technique can lead to a non-invasive system to accumulate CTCs, enabling highly sensitive CTC detection with a simple system appropriate for ultimate clinical translation. To test this hypothesis, a research plan with five specific aims has been developed. The first is to demonstrate that coupled MNPs targeted to mimics of circulating rare cells can be identified, accumulated, and manipulated in a vascular phantom using a combination of magnetic trapping and mmPA imaging. In the second aim, we will develop an effective magnetic trapping approach that can be easily integrated with a real-time US/PA imaging system appropriate for potential clinical applications in the peripheral vasculature.
The third aim, in which a highly magnetic and NIR-absorbing coupled nanoprobe will be synthesized and characterized, is focused on developing the appropriate contrast agent for this application. Before performing in vivo tests, the fourth aim will demonstrate trapping and manipulation of targeted cells in circulation using an in vitro model of flow in a peripheral vessel. Finally, the overall approach will be validated i vivo by demonstrating trapping and manipulation of targeted cells in circulation using a murine model of metastatic cell trafficking in the vasculature. The overall goal of the proposed research plan is to help provide the background required to construct a prototype integrated system and to design studies helping translate mmPA technology into the clinic. This is a necessary first step in developing a robust system for metastatic disease management.

Public Health Relevance

Most cancer deaths are caused by metastasis, a process whereby primary tumor cells spread to non-adjacent organs mainly by penetrating the walls of blood vessels and circulating through the bloodstream. We hypothesize that biologically targeted, coupled magnetic nanoparticles can be used to identify, accumulate, and manipulate rare cell types such as metastatic cells circulating in the vasculature using a combination of magnetic trapping and magneto-motive photoacoustic (mmPA) imaging. If successful, this technique can lead to a non-invasive system to accumulate and sensitively detect metastatic cells trafficking in the vasculature.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB016034-03
Application #
8776296
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Liu, Christina
Project Start
2012-12-15
Project End
2016-11-30
Budget Start
2014-12-01
Budget End
2015-11-30
Support Year
3
Fiscal Year
2015
Total Cost
$395,513
Indirect Cost
$139,517
Name
University of Washington
Department
Type
Other Domestic Higher Education
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Li, David S; Lee, Yi-Ting; Xi, Yuyin et al. (2018) A small-angle scattering environment for in situ ultrasound studies. Soft Matter 14:5283-5293
Kirby, Mitchell A; Pelivanov, Ivan; Song, Shaozhen et al. (2017) Optical coherence elastography in ophthalmology. J Biomed Opt 22:1-28
Bruce, Matthew; Kolokythas, Orpheus; Ferraioli, Giovanna et al. (2017) Limitations and artifacts in shear-wave elastography of the liver. Biomed Eng Lett 7:81-89
Li, David S; Yoon, Soon Joon; Pelivanov, Ivan et al. (2017) Polypyrrole-Coated Perfluorocarbon Nanoemulsions as a Sono-Photoacoustic Contrast Agent. Nano Lett 17:6184-6194
Li, Junwei; Xiao, Hong; Yoon, Soon Joon et al. (2016) Functional Photoacoustic Imaging of Gastric Acid Secretion Using pH-Responsive Polyaniline Nanoprobes. Small 12:4690-6
Ambrozi?ski, ?ukasz; Song, Shaozhen; Yoon, Soon Joon et al. (2016) Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity. Sci Rep 6:38967
Ambrozi?ski, ?ukasz; Pelivanov, Ivan; Song, Shaozhen et al. (2016) Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media. Appl Phys Lett 109:043701
Wei, Chen-Wei; Nguyen, Thu-Mai; Xia, Jinjun et al. (2015) Real-time integrated photoacoustic and ultrasound (PAUS) imaging system to guide interventional procedures: ex vivo study. IEEE Trans Ultrason Ferroelectr Freq Control 62:319-28
Li, Junwei; Arnal, Bastien; Wei, Chen-Wei et al. (2015) Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging. ACS Nano 9:1964-76
Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen et al. (2015) Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography. J Biomed Opt 20:016001

Showing the most recent 10 out of 25 publications