The objective of this R01 application is to develop an integrated small-animal whole-body photoacoustic- ultrasonic computed tomography system and the associated image reconstruction algorithms for simultaneous high-resolution anatomical and functional imaging with motion tracking. Due to the widespread use of animal models for human disease studies, small-animal whole-body imaging plays an increasingly important role in biomedical research. While much effort has been invested in the development of small-animal imaging systems, each of the available methods possesses significant limitations. Photoacoustic computed tomography (PACT) has recently been recognized as a promising tool for small- animal whole-body imaging. Utilizing the photoacoustic effect, PACT can image intact biological tissues with rich optical absorption contrast at high spatial resolution at tissue depth well beyond the optical diffusion limit (~1 mm). Since optical absorption is sensitive to physiological parameters such as the total concentration and oxygen saturation of hemoglobin, PACT can provide both anatomical and functional imaging. With the aid of functionalized contrast agents (molecular probes), PACT can also permit molecular imaging. Most PACT systems implemented to date assume that the to-be-imaged object possesses uniform acoustic properties. This assumption is strongly violated in whole-body imaging of small animals due to the presence of either thick bones or gas pockets, which possess speed-of-sound and mass density values greatly different from those of the surrounding soft tissues. In addition, the existing PACT systems suffer from significant motion artifacts. Accordingly, there remains an important need for the development of improved small-animal PACT systems and associated image reconstruction methodologies. The proposed integration of PACT and ultrasonic computed tomography (USCT) with motion tracking will bring unique advantages and allow us to overcome the two challenges mentioned above. First, the acoustic property distributions reconstructed by use of USCT will be employed to inform the PACT image reconstruction algorithms and hence improve the whole-body image quality. The ultrasonic contrasts will also complement optical contrasts from PACT for accurate multi-faceted disease assessment. Second, to minimize motion artifacts, respiration and cardiac motions will be monitored during data acquisition for retrospective gating. Therefore, the synergistic fusion of USCT and PACT will provide automatically co-registered anatomical and functional contrasts for comprehensive imaging without using ionizing radiation or exogenous contrast agents.
The specific aims of this project are as follows: (1) Develop an integrated whole-body photoacoustic- ultrasonic computed tomography system. (2) Develop image reconstruction algorithms for use with the dual- modality imaging system. (3) Develop retrospectively respiration-gated tomography that minimizes motion artifacts. (4) Test the imaging systems with tissue phantoms and living animals.

Public Health Relevance

Due to the widespread use of animal models for human disease studies, small-animal whole-body imaging plays an increasingly important role in biomedical research. Since optical absorption is sensitive to physiological parameters such as the total concentration and oxygen saturation of hemoglobin, the proposed photoacoustic-ultrasonic computed tomography technology can provide both anatomical and functional imaging. Such imaging capabilities are expected to enable numerous discoveries in biomedicine and facilitate drug screening.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB016963-02
Application #
8651915
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Lopez, Hector
Project Start
2013-05-01
Project End
2017-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
2
Fiscal Year
2014
Total Cost
$575,682
Indirect Cost
$147,144
Name
Washington University
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Zhou, Yong; Liang, Jinyang; Wang, Lihong V (2016) Cuffing-based photoacoustic flowmetry in humans in the optical diffusive regime. J Biophotonics 9:208-12
Lin, Li; Yao, Junjie; Li, Lei et al. (2016) In vivo photoacoustic tomography of myoglobin oxygen saturation. J Biomed Opt 21:61002
Yao, Junjie; Kaberniuk, Andrii A; Li, Lei et al. (2016) Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat Methods 13:67-73
Ma, Jun; Shi, Junhui; Hai, Pengfei et al. (2016) Grueneisen relaxation photoacoustic microscopy in vivo. J Biomed Opt 21:66005
Yeh, Chenghung; Soetikno, Brian; Hu, Song et al. (2015) Three-dimensional arbitrary trajectory scanning photoacoustic microscopy. J Biophotonics 8:303-8
Wang, Lidai; Li, Guo; Xia, Jun et al. (2015) Ultrasonic-heating-encoded photoacoustic tomography with virtually augmented detection view. Optica 2:307-312
Lin, Li; Xia, Jun; Wong, Terence T W et al. (2015) In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. J Biomed Opt 20:016019
Zhang, Ruiying; Pan, Dipanjan; Cai, Xin et al. (2015) alphaVbeta3-targeted copper nanoparticles incorporating an Sn 2 lipase-labile fumagillin prodrug for photoacoustic neovascular imaging and treatment. Theranostics 5:124-33
Zhou, Yong; Poudel, Joemini; Li, Guo et al. (2015) In vivo photoacoustic flowmetry at depths of the diffusive regime based on saline injection. J Biomed Opt 20:87001
Li, Guo; Li, Lei; Zhu, Liren et al. (2015) Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array. J Biomed Opt 20:066010

Showing the most recent 10 out of 40 publications