Cells respond to mechanical forces in their environment. These forces are likely to be as important to cell phenotype as soluble factors, with similarly complex effects. In particular, mechanical tension generated by cells in response to the stiffness of their environment regulates the behavior of most (if not all) cell types. Over the last ten years, the importance of matrix stiffness as a mechanism for modulating cell shape and function has become increasingly studied, and there is now good evidence that changes in stiffness not only correlate with disease, but contribute to its development. A limitation of most current work studying the role of tissue stiffness in pathology is an exclusive emphasis on cell and tissue elastic modulus, which is frequently reported as a constant independent of time or deformation (strain). Synthetic substrates have been used extensively for studies of the cellular response to substrate stiffness, but have a numberof significant differences from biological tissues: they are linearly elastic, whereas most biologicl materials demonstrate non-linearity~ they fail to incorporate viscosity, although biologicl materials are viscoelastic~ and they are two-dimensional rather than three-dimensional. Thus, while cells clearly respond to changes in the elastic modulus, the impact of viscosity and non-linearity on cells and tissues is not understood even though these factors may be major determinants of cell behavior in mechanically physiological environments. We hypothesize that mechanosensing by cells within tissues or on artificial substrates has characteristic length and time scales and that non-linear elasticity and viscosity are important properties of biological tissues that drive cell behavior and tissue organizaton over both short and long ranges. Our goal is to develop a mechanical model of a tissue, and to determine the biological relevance of various mechanical features to cell behavior and architectural features of this tissue when normal and injured. We will use the normal and fibrotic liver as a model tissue, since there are extensive preliminary characterizations of liver mechanics, although the general principles of our work will be applicable to multiple tissues. We have three specific aims: 1) to carry out a detailed mechanical characterization of the normal and fibrotic liver, and to develop and test a mechanical model of the liver highlighting the relative contributions of cells and the matrix~ 2) to develop and characterize novel viscoelastic substrates that mimic the viscoelasticity of normal and fibrotic livers, and to determine the response of individual cells of the liver to these biologically relevant substrates~ and 3) to computationally model and experimentally test the role of mechanics in large-scale tissue patterning in fibrosis.

Public Health Relevance

Fibrosis, also known as excessive wound healing, is a significant cause of morbidity and mortality worldwide, although there are currently no approved antifibrotic therapies. Our goal is to study the complex mechanical properties of the normal, fibrotic, and cirrhotic liver as a model tissue, to determine the effets of these properties on fibrogenic cells of the liver and on large-scale architectural changes, and to identify interventions affecting these mechanical properties in proof-of-concept studies. This has the potential to significantly increase our understanding of cellular mechanics and fibrosis in general and to identify new diagnostic tests for fibrosis and new classes of antifibroic agents.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Biomaterials and Biointerfaces Study Section (BMBI)
Program Officer
Hunziker, Rosemarie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Hall, Matthew S; Alisafaei, Farid; Ban, Ehsan et al. (2016) Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc Natl Acad Sci U S A 113:14043-14048
Perepelyuk, Maryna; Chin, LiKang; Cao, Xuan et al. (2016) Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics. PLoS One 11:e0146588
Ridge, Karen M; Shumaker, Dale; Robert, Amélie et al. (2016) Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. Methods Enzymol 568:389-426
Wei, Xi; Zhu, Qian; Qian, Jin et al. (2016) Response of biopolymer networks governed by the physical properties of cross-linking molecules. Soft Matter 12:2537-41
Zhang, Sijia; Cao, Xuan; Stablow, Alec M et al. (2016) Tissue Strain Reorganizes Collagen With a Switchlike Response That Regulates Neuronal Extracellular Signal-Regulated Kinase Phosphorylation In Vitro: Implications for Ligamentous Injury and Mechanotransduction. J Biomech Eng 138:021013
Robison, Patrick; Caporizzo, Matthew A; Ahmadzadeh, Hossein et al. (2016) Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 352:aaf0659
Liu, Alan S; Wang, Hailong; Copeland, Craig R et al. (2016) Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling. Sci Rep 6:33919
van Oosten, Anne S G; Vahabi, Mahsa; Licup, Albert J et al. (2016) Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Rep 6:19270
Cao, Xuan; Moeendarbary, Emad; Isermann, Philipp et al. (2016) A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration. Biophys J 111:1541-1552
Charrier, Elisabeth E; Janmey, Paul A (2016) Mechanical Properties of Intermediate Filament Proteins. Methods Enzymol 568:35-57

Showing the most recent 10 out of 20 publications