Evaluation of the risk of foreign compounds depends upon understanding the enzymes involved their degradation. A set of under-studied metabolic enzymes include the epoxide hydrolases in the ?/?-hydrolase fold family. These enzymes degrade epoxides by adding water. Some epoxides are reactive and highly mutagenic, and epoxides are commonly formed as metabolically labile functionalities by cytochrome P450s from variety of environmental chemicals. Not only are the levels of epoxide hydrolases variable in the human population, but they can be inhibited or induced by environmental chemicals and drugs. A central hypothesis is that epoxide hydrolases also have endogenous roles. We have established that the soluble epoxide hydrolase also acts on epoxides of arachidonic acid. These are key regulatory lipids. In fact, an inhibitor of the soluble epoxide hydrolase we made during the last grant period is in clinical trials to treat hypertension. Because the soluble epoxide hydrolase is involved in the regulation of blood pressure, inflammation and pain, it additionally represents a novel target for the action of xenobiotics. Similarly, inhibition of the microsomal epoxide hydrolase leads to acute xenobiotic toxicity. The knowledge of ?/?-fold enzymes will be expanded by completing two major objectives, and the tools developed here are critical to test a series of hypotheses regarding the endogenous role of the soluble epoxide hydrolase. Objective I addresses the structure and fundamental biochemistry of epoxide hydrolases with a major emphasis on the less studied soluble form. Objective II continues the development of a metabolomic profiling system to examine biologically active lipids in the arachidonate cascade and related pathways. Using this analytical platform as well as potent inhibitors and inducers of the enzyme, the role of the soluble epoxide hydrolase as a key enzyme in the arachidonate cascade and thus regulation of inflammation and pain will be evaluated. Along with 15% of the world's pharmaceuticals, common herbicides and personal care products are also known to act on the arachidonate cascade. For example we have found the common soap anti microbial, triclocarban, is a potent inhibitor of the soluble epoxide hydrolase and the endogenous peptide angiotensin along with PPAR? agonists are inducers. By addressing our objectives, knowledge will be expanded on the biochemistry and role in xenobiotic metabolism of epoxide hydrolases. The hypothesis of endogenous roles for epoxide hydrolases will be tested and the arachidonate cascade evaluated as a site of action for xenobiotics and nutraceuticals.

Public Health Relevance

Epoxide hydrolase enzymes protect us against many environmental chemicals, and some of them also function to regulate our blood pressure, inflammation and pain. This study will identify new epoxide hydrolase targets for the action of drugs and nutraceuticals to improve health. This knowledge will also predict risk from environmental chemicals that increase or decrease the levels of epoxide hydrolases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES002710-31
Application #
8210927
Study Section
Xenobiotic and Nutrient Disposition and Action Study Section (XNDA)
Program Officer
Balshaw, David M
Project Start
1980-12-01
Project End
2013-12-31
Budget Start
2012-01-01
Budget End
2012-12-31
Support Year
31
Fiscal Year
2012
Total Cost
$386,980
Indirect Cost
$132,983
Name
University of California Davis
Department
Zoology
Type
Schools of Earth Sciences/Natur
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Yang, Jun; Bratt, Jennifer; Franzi, Lisa et al. (2015) Soluble epoxide hydrolase inhibitor attenuates inflammation and airway hyperresponsiveness in mice. Am J Respir Cell Mol Biol 52:46-55
Xu, Jiawen; Morisseau, Christophe; Hammock, Bruce D (2014) Expression and characterization of an epoxide hydrolase from Anopheles gambiae with high activity on epoxy fatty acids. Insect Biochem Mol Biol 54:42-52
Morisseau, Christophe; Wecksler, Aaron T; Deng, Catherine et al. (2014) Effect of soluble epoxide hydrolase polymorphism on substrate and inhibitor selectivity and dimer formation. J Lipid Res 55:1131-1138
Burmistrov, Vladimir; Morisseau, Christophe; Lee, Kin Sing Stephen et al. (2014) Symmetric adamantyl-diureas as soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 24:2193-7
Sun, Dong; Cuevas, Azita J; Gotlinger, Katherine et al. (2014) Soluble epoxide hydrolase-dependent regulation of myogenic response and blood pressure. Am J Physiol Heart Circ Physiol 306:H1146-53
Gupta, Romi; Dong, Yuying; Solomon, Peter D et al. (2014) Synergistic tumor suppression by combined inhibition of telomerase and CDKN1A. Proc Natl Acad Sci U S A 111:E3062-71
Lee, Kin Sing Stephen; Liu, Jun-Yan; Wagner, Karen M et al. (2014) Optimized inhibitors of soluble epoxide hydrolase improve in vitro target residence time and in vivo efficacy. J Med Chem 57:7016-30
Despa, Sanda; Sharma, Savita; Harris, Todd R et al. (2014) Cardioprotection by controlling hyperamylinemia in a "humanized" diabetic rat model. J Am Heart Assoc 3:
Schuchardt, Jan Philipp; Schmidt, Simone; Kressel, Gaby et al. (2014) Modulation of blood oxylipin levels by long-chain omega-3 fatty acid supplementation in hyper- and normolipidemic men. Prostaglandins Leukot Essent Fatty Acids 90:27-37
Schebb, Nils Helge; Ostermann, Annika I; Yang, Jun et al. (2014) Comparison of the effects of long-chain omega-3 fatty acid supplementation on plasma levels of free and esterified oxylipins. Prostaglandins Other Lipid Mediat 113-115:21-9

Showing the most recent 10 out of 273 publications