The cytochrome P-450 dependent monooxygenase system plays a pivotal role in both the detoxification and bioactivation of drugs, environmental contaminants, and other potential chemical toxicants. The balance between detoxification and activation is largely dependent on the relative amounts and activities of different isozymes of cytochrome P-450. The long-term objective of the research proposed in this application is to design irreversible inhibitors of specific isozymes of cytochrome P-450. Such isozyme-specific inhibitors could be used in vivo either 1) diagnostically to assess the role of the various cytochromes in mediating or protecting against chemical toxicity or 2) therapeutically to redirect the metabolism of xenobiotics from potentially harmful to innocuous pathways. This proposal will focus on the mechanism, isozyme specificity, and structural requirements of the suicide inactivation of rat liver cytochrome P-450 by chloramphenicol. As the only known suicide substrate of cytochrome P-450 which acts by virtue of the modification of the protein rather than the heme moiety, chloramphenicol or one of its analogs should prove a unique tool for studying and modulating the various functions of the enzyme. Emphasis will first be placed on elucidation of the mechanism by which a single isozyme of rat liver cytochrome P-450 is inactivated in vivo upon covalent modification of specific amino acid residues in the protein by metabolites of chloramphenicol. Subsequent studies will focus on determining the specificity of chloramphenicol as an inhibitor of different isozymes of rat liver cytochrome P-450 and on elucidating which structural features of the chloramphenicol molecule are responsible for its effectiveness and specificity as a suicide substrate of cytochrome P-450. These studies should provide the rational basis for the design of isozyme-specific inhibitors for modulating monooxygenase function in vivo.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
1R01ES003619-01
Application #
3251097
Study Section
Toxicology Study Section (TOX)
Project Start
1985-02-01
Project End
1988-01-31
Budget Start
1985-02-01
Budget End
1986-01-31
Support Year
1
Fiscal Year
1985
Total Cost
Indirect Cost
Name
University of Arizona
Department
Type
Schools of Pharmacy
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85722
Shah, Manish B; Zhang, Qinghai; Halpert, James R (2018) Crystal Structure of CYP2B6 in Complex with an Efavirenz Analog. Int J Mol Sci 19:
Chen, Chao; Liu, Jingbao; Halpert, James R et al. (2018) Use of Phenoxyaniline Analogues To Generate Biochemical Insights into the Interactio n of Polybrominated Diphenyl Ether with CYP2B Enzymes. Biochemistry 57:817-826
Shah, Manish B; Liu, Jingbao; Zhang, Qinghai et al. (2017) Halogen-? Interactions in the Cytochrome P450 Active Site: Structural Insights into Human CYP2B6 Substrate Selectivity. ACS Chem Biol 12:1204-1210
Shah, Manish B; Jang, Hyun-Hee; Wilderman, P Ross et al. (2016) Effect of detergent binding on cytochrome P450 2B4 structure as analyzed by X-ray crystallography and deuterium-exchange mass spectrometry. Biophys Chem 216:1-8
Liu, Jingbao; Shah, Manish B; Zhang, Qinghai et al. (2016) Coumarin Derivatives as Substrate Probes of Mammalian Cytochromes P450 2B4 and 2B6: Assessing the Importance of 7-Alkoxy Chain Length, Halogen Substitution, and Non-Active Site Mutations. Biochemistry 55:1997-2007
Shah, Manish B; Wilderman, P Ross; Liu, Jingbao et al. (2015) Structural and biophysical characterization of human cytochromes P450 2B6 and 2A6 bound to volatile hydrocarbons: analysis and comparison. Mol Pharmacol 87:649-59
Jang, Hyun-Hee; Liu, Jingbao; Lee, Ga-Young et al. (2015) Functional importance of a peripheral pocket in mammalian cytochrome P450 2B enzymes. Arch Biochem Biophys 584:61-9
Wilderman, P Ross; Jang, Hyun-Hee; Malenke, Jael R et al. (2014) Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida. Toxicol Appl Pharmacol 274:393-401
Jang, Hyun-Hee; Davydov, Dmitri R; Lee, Ga-Young et al. (2014) The role of cytochrome P450 2B6 and 2B4 substrate access channel residues predicted based on crystal structures of the amlodipine complexes. Arch Biochem Biophys 545:100-7
Shah, Manish B; Jang, Hyun-Hee; Zhang, Qinghai et al. (2013) X-ray crystal structure of the cytochrome P450 2B4 active site mutant F297A in complex with clopidogrel: insights into compensatory rearrangements of the binding pocket. Arch Biochem Biophys 530:64-72

Showing the most recent 10 out of 111 publications