Biliverdin reductase (BVR) is a unique dual pH/cofactor-dependent enzyme that catalyzes the last step in the heme degradation pathway (i,e reduction of biliverdin to bilirubin). Biliverdin, the substrate for BVR, is generated, with carbon monoxide (CO), in the course of heme degradation by the stress/heat shock family of proteins: heme oxygenase (HO)-1 and HO-2. CO functions as NO. BVR is the ultimate regulator of heme metabolism, in that, biliverdin regulates HO activity in vivo. Biliverdin is also a liver tumor promoter and inhibits human Herpes virus-6 replication and HIV-1 proliferation. Bilirubin is a potent antioxidant; low levels of serum bilirubin are associated with increased risk of coronary artery heart disease and retinopathy of prematurity. We are the only laboratory in the country actively pursuing molecular toxicology research on BVR that, by virtue of being an -SH-dependent enzyme, is a target for environmental agents and nephrotoxins. We have now discovered that BVR is a kinase and a protein kinase C (PKC)-interacting and -activating protein and translocates into the nucleus in response to nephrotoxins: such as mercury, bromobenzene and bacterial endotoxins (LPS) as well as in cancerous transformation. In addition, in human kidney tumors, ischemic rat brain and kidneys, and in kidneys of rats exposed to nephrotoxins, BVR levels are increased. Also, the ability to produce biliverdin in advanced human prostate tumor cells is increased. PKCs play an important role in the field of cancer research and are key components of cellular response to oxidative stress. Based on the ability of BVR to activate PKC, it is likely that BVR plays a significant role in modulating a multitude of cellular functions including cell growth and differentiation.
The Specific Aims of the proposed studies are 1) To further characterize BVR for molecular properties and requirements of kinase and reductase activities. 2) To further investigate BVR/PKC interaction. 3) To characterize BVR interactive proteins in the cells and to identify the proteins that interact with BVR under normal and oxidative stress conditions, such as exposure to nephrotoxic agents and cancer. Also, to explore the nuclear function of BVR in the context of HO-1's response to oxidative stress. 4) To isolate the human BVR gene, characterize its promoter region and analyze its regulation by various toxins and effector agents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES004066-19
Application #
6788717
Study Section
Alcohol and Toxicology Subcommittee 4 (ALTX)
Program Officer
Maull, Elizabeth A
Project Start
1985-12-06
Project End
2005-12-18
Budget Start
2004-09-01
Budget End
2005-12-18
Support Year
19
Fiscal Year
2004
Total Cost
$319,000
Indirect Cost
Name
University of Rochester
Department
Biochemistry
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M et al. (2016) Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation. FASEB J 30:2926-44
Gibbs, Peter E M; Lerner-Marmarosh, Nicole; Poulin, Amelia et al. (2014) Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor. FASEB J 28:2478-91
Gibbs, Peter E M; Tudor, Cicerone; Maines, Mahin D (2012) Biliverdin reductase: more than a namesake - the reductase, its Peptide fragments, and biliverdin regulate activity of the three classes of protein kinase C. Front Pharmacol 3:31
Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M et al. (2012) The human biliverdin reductase-based peptide fragments and biliverdin regulate protein kinase C? activity: the peptides are inhibitors or substrate for the protein kinase C. J Biol Chem 287:24698-712
Kapitulnik, Jaime; Maines, Mahin D (2012) The role of bile pigments in health and disease: effects on cell signaling, cytotoxicity, and cytoprotection. Front Pharmacol 3:136
Gibbs, Peter E M; Miralem, Tihomir; Lerner-Marmarosh, Nicole et al. (2012) Formation of ternary complex of human biliverdin reductase-protein kinase C?-ERK2 protein is essential for ERK2-mediated activation of Elk1 protein, nuclear factor-?B, and inducible nitric-oxidase synthase (iNOS). J Biol Chem 287:1066-79
Ding, Bo; Gibbs, Peter E M; Brookes, Paul S et al. (2011) The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival: a reductase-based peptide counters *-adrenergic receptor ligand-mediated cardiac dysfunction. FASEB J 25:301-13
Gibbs, Peter E M; Miralem, Tihomir; Maines, Mahin D (2010) Characterization of the human biliverdin reductase gene structure and regulatory elements: promoter activity is enhanced by hypoxia and suppressed by TNF-alpha-activated NF-kappaB. FASEB J 24:3239-54
Maines, Mahin D (2010) Potential application of biliverdin reductase and its fragments to modulate insulin/IGF-1/MAPK/PI3-K signaling pathways in therapeutic settings. Curr Drug Targets 11:1586-94
Miralem, Tihomir; Gibbs, Peter E M; Revert, Fernando et al. (2010) Human biliverdin reductase suppresses Goodpasture antigen-binding protein (GPBP) kinase activity: the reductase regulates tumor necrosis factor-alpha-NF-kappaB-dependent GPBP expression. J Biol Chem 285:12551-8

Showing the most recent 10 out of 58 publications