Population-based epidemiologic studies of communities in the United States have revealed a consistent association between ambient particulate air pollution and increases in morbidity and mortality. The observed increases result from both respiratory and cardiovascular diseases. Similar associations have been observed for rates of hospital admissions for respiratory and cardiovascular diseases for subjects over age 65. These ambient exposures are to low levels of particulates, many times lower than occupational exposures faced by workers in a variety of industries, including manufacturing, construction, transportation and electric-power generation. The objective of this proposal is to investigate the role of occupational exposure to particulates in the development of respiratory and cardiac responses in boilermakers. We will employ a detailed, continuous-exposure assessment to PM/2.5 with repeated measures of biologic and physiologic markers of response. Specific hypotheses to be tested will include: (1) occupational exposure to fuel-oil ash airway inflammation as reflected in increased expired NO, and airway obstruction as reflected in decreases in peak flow (PEFR) and FEV/1; (2) particulate exposure will result in acute changes in cardiovascular function, as reflected in changes in heart rate, heart-rate variability and blood pressure; (3) particulate exposure results in increased serum fibrinogen levels, a known risk factor for cardiovascular disease; and (4) chronic bronchitis predisposes particulate-exposed workers to changes in cardiac function. The results of this study will have important implications for preventive efforts aimed at reducing morbidity and mortality from occupational exposure to respirable particulates.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
1R01ES009860-01
Application #
2848459
Study Section
Safety and Occupational Health Study Section (SOH)
Project Start
1999-03-01
Project End
2002-02-28
Budget Start
1999-03-01
Budget End
2000-02-29
Support Year
1
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Harvard University
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Shen, Sipeng; Zhang, Ruyang; Zhang, Jinming et al. (2018) Welding fume exposure is associated with inflammation: a global metabolomics profiling study. Environ Health 17:68
Umukoro, Peter E; Fan, Tianteng; Zhang, Jinming et al. (2016) Long-Term Metal PM2.5 Exposures Decrease Cardiac Acceleration and Deceleration Capacities in Welders. J Occup Environ Med 58:227-31
Umukoro, Peter E; Cavallari, Jennifer M; Fang, Shona C et al. (2016) Short-term metal particulate exposures decrease cardiac acceleration and deceleration capacities in welders: a repeated-measures panel study. Occup Environ Med 73:91-6
Cavallari, Jennifer M; Fang, Shona C; Eisen, Ellen A et al. (2016) Environmental and occupational particulate matter exposures and ectopic heart beats in welders. Occup Environ Med 73:435-41
Umukoro, Peter E; Wong, Jason Y Y; Cavallari, Jennifer M et al. (2016) Are the Associations of Cardiac Acceleration and Deceleration Capacities With Fine Metal Particulate in Welders Mediated by Inflammation? J Occup Environ Med 58:232-7
Wong, Jason Y Y (2015) To the Editor. J Occup Environ Med 57:e83-4
Wong, Jason Y Y; Fang, Shona C; Grashow, Rachel et al. (2015) The relationship between occupational metal exposure and arterial compliance. J Occup Environ Med 57:355-60
Ahasic, Amy M; Tejera, Paula; Wei, Yongyue et al. (2015) Predictors of Circulating Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor-Binding Protein-3 in Critical Illness. Crit Care Med 43:2651-9
Grashow, Rachel; Zhang, Jinming; Fang, Shona C et al. (2014) Inverse association between toenail arsenic and body mass index in a population of welders. Environ Res 131:131-3
Wong, Jason Y Y; De Vivo, Immaculata; Lin, Xihong et al. (2014) Cumulative PM(2.5) exposure and telomere length in workers exposed to welding fumes. J Toxicol Environ Health A 77:441-55

Showing the most recent 10 out of 51 publications