Environmental or occupational exposure to manganese (Mn) causes a neuropathy resembling idiopathic Parkinson's disease (PD), characterized by motor deficits and damage to dopaminergic (DAergic) nuclei of the the basal ganglia. Mitochondria! dysfunction, oxidative damage, and protein aggregation have been implicated in the pathobiology of PD. The complexity of the vertebrate brain has hindered understanding of molecular mechanisms associated with this disorder. The nematode, Caenorhabditis elegans (C. elegans) and mammals share a highly conserved genetic code with all genes responsible for DA biosynthesis, packaging, and reuptake present and functional in the worm. Exposure of C. elegans to Mn results in DAergic neurodegeneration, consistent with observations in mammals. Thus, the C. elegans offers an 1 innovative and powerful platform to evaluate the molecular and functional mechanisms associated with Mn- induced DAergic neurodegeneration and a unique model for evaluating gene-environment interactions. Our overall hypothesis is that knockdown and loss-of-function mutations of the PD-associated genes, dj-1,and pinkl, and their related chaperone proteins confer selective vulnerability to DAergic neurons rendering them susceptible to an accelerated neurodegeneration upon exposure to Mn. We will test the following Specific Aims: (1A) Knockdown and loss-of-function mutations in dj-1and pinkl render C. elegans susceptible to oxidant-induced DAergic neurodegeneration which is amplified by Mn exposure, (1B)Overexpression of DJ- 1 and PINK1 protects C. elegans against oxidant-induced DAergic neurodegeneration mediated by 6-OHDA and Mn, (2) Knockdown of heat shock protein 70 (hsp70) and carboxyl terminus of Hsc70-interacting protein (CHIP) orthologues inhibits DJ-1 and PINK1 translocation to the mitochondria rendering C. elegans more susceptible to 6-OHDA and Mn-induced DAergic neurodegeneration. Using RNAi, site-directed mutagenesis and overexpression of PD-associated genes to generate the worm phenotypes, we will assess DAergic neurodegeneration by GFP fluorescence and a-synuclein aggregation assays. Oxidative injury will be assayed by measuring F2- and F3-isoprostanes, ATP and mitochondrial membrane potential. Understanding the relationship between genetic vulnerability and Mn exposure will provide critical insights into the mechanisms of Mn-induced toxicity and the development of novel therapeutic neuroprotective strategies.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Neurotoxicology and Alcohol Study Section (NAL)
Program Officer
Kirshner, Annette G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Nguyen, Thuy T; Caito, Samuel W; Zackert, William E et al. (2016) Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7. Aging (Albany NY) 8:1759-80
Claassen, Daniel O; Dobolyi, David G; Isaacs, David A et al. (2016) Linear and Curvilinear Trajectories of Cortical Loss with Advancing Age and Disease Duration in Parkinson's Disease. Aging Dis 7:220-9
Henze, Andrea; Homann, Thomas; Rohn, Isabelle et al. (2016) Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin. Sci Rep 6:37346
Peres, Tanara V; Schettinger, Maria Rosa C; Chen, Pan et al. (2016) ""Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies"". BMC Pharmacol Toxicol 17:57
Reckziegel, Patrícia; Chen, Pan; Caito, Sam et al. (2016) Extracellular dopamine and alterations on dopamine transporter are related to reserpine toxicity in Caenorhabditis elegans. Arch Toxicol 90:633-45
Kwakye, Gunnar F; McMinimy, Rachael A; Aschner, Michael (2016) Disease-Toxicant Interactions in Parkinson's Disease Neuropathology. Neurochem Res :
Tidball, Andrew M; Neely, M Diana; Chamberlin, Reed et al. (2016) Genomic Instability Associated with p53 Knockdown in the Generation of Huntington's Disease Human Induced Pluripotent Stem Cells. PLoS One 11:e0150372
Zhang, Ziyan; Singh, Rajat; Aschner, Michael (2016) Methods for the Detection of Autophagy in Mammalian Cells. Curr Protoc Toxicol 69:20.12.1-20.12.26
Song, Han; Zheng, Gang; Liu, Yang et al. (2016) Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation. Toxicol Appl Pharmacol 297:1-11
Yuntao, Fang; Chenjia, Guo; Panpan, Zhang et al. (2016) Role of autophagy in methylmercury-induced neurotoxicity in rat primary astrocytes. Arch Toxicol 90:333-45

Showing the most recent 10 out of 161 publications