Environmental or occupational exposure to manganese (Mn) causes a neuropathy resembling idiopathic Parkinson's disease (PD), characterized by motor deficits and damage to dopaminergic (DAergic) nuclei of the the basal ganglia. Mitochondria! dysfunction, oxidative damage, and protein aggregation have been implicated in the pathobiology of PD. The complexity of the vertebrate brain has hindered understanding of molecular mechanisms associated with this disorder. The nematode, Caenorhabditis elegans (C. elegans) and mammals share a highly conserved genetic code with all genes responsible for DA biosynthesis, packaging, and reuptake present and functional in the worm. Exposure of C. elegans to Mn results in DAergic neurodegeneration, consistent with observations in mammals. Thus, the C. elegans offers an 1 innovative and powerful platform to evaluate the molecular and functional mechanisms associated with Mn- induced DAergic neurodegeneration and a unique model for evaluating gene-environment interactions. Our overall hypothesis is that knockdown and loss-of-function mutations of the PD-associated genes, dj-1,and pinkl, and their related chaperone proteins confer selective vulnerability to DAergic neurons rendering them susceptible to an accelerated neurodegeneration upon exposure to Mn. We will test the following Specific Aims: (1A) Knockdown and loss-of-function mutations in dj-1and pinkl render C. elegans susceptible to oxidant-induced DAergic neurodegeneration which is amplified by Mn exposure, (1B)Overexpression of DJ- 1 and PINK1 protects C. elegans against oxidant-induced DAergic neurodegeneration mediated by 6-OHDA and Mn, (2) Knockdown of heat shock protein 70 (hsp70) and carboxyl terminus of Hsc70-interacting protein (CHIP) orthologues inhibits DJ-1 and PINK1 translocation to the mitochondria rendering C. elegans more susceptible to 6-OHDA and Mn-induced DAergic neurodegeneration. Using RNAi, site-directed mutagenesis and overexpression of PD-associated genes to generate the worm phenotypes, we will assess DAergic neurodegeneration by GFP fluorescence and a-synuclein aggregation assays. Oxidative injury will be assayed by measuring F2- and F3-isoprostanes, ATP and mitochondrial membrane potential. Understanding the relationship between genetic vulnerability and Mn exposure will provide critical insights into the mechanisms of Mn-induced toxicity and the development of novel therapeutic neuroprotective strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES010563-10
Application #
7760907
Study Section
Neurotoxicology and Alcohol Study Section (NAL)
Program Officer
Kirshner, Annette G
Project Start
2000-07-01
Project End
2011-12-31
Budget Start
2010-01-01
Budget End
2010-12-31
Support Year
10
Fiscal Year
2010
Total Cost
$332,747
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Pediatrics
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
da Silveira, Tássia Limana; Zamberlan, Daniele Coradine; Arantes, Leticia Priscilla et al. (2018) Quinolinic acid and glutamatergic neurodegeneration in Caenorhabditis elegans. Neurotoxicology 67:94-101
Ruszkiewicz, Joanna A; Pinkas, Adi; Miah, Mahfuzur R et al. (2018) C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol 354:126-135
Peres, Tanara V; Arantes, Leticia P; Miah, Mahfuzur R et al. (2018) Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity. Neurotox Res :
Chiou, Brian; Neal, Emma H; Bowman, Aaron B et al. (2018) Pharmaceutical iron formulations do not cross a model of the human blood-brain barrier. PLoS One 13:e0198775
Pajarillo, Edward; Johnson Jr, James; Kim, Judong et al. (2018) 17?-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. Neurotoxicology 65:280-288
Meng, Qingtao; Wu, Shenshen; Wang, Yajie et al. (2018) MPO Promoter Polymorphism rs2333227 Enhances Malignant Phenotypes of Colorectal Cancer by Altering the Binding Affinity of AP-2?. Cancer Res 78:2760-2769
Karki, Pratap; Hong, Peter; Johnson Jr, James et al. (2018) Arundic Acid Increases Expression and Function of Astrocytic Glutamate Transporter EAAT1 Via the ERK, Akt, and NF-?B Pathways. Mol Neurobiol 55:5031-5046
Ke, Tao; Gonçalves, Filipe Marques; Gonçalves, Cinara Ludvig et al. (2018) Post-translational modifications in MeHg-induced neurotoxicity. Biochim Biophys Acta Mol Basis Dis :
Rohn, Isabelle; Marschall, Talke Anu; Kroepfl, Nina et al. (2018) Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans. Metallomics 10:818-827
Johnson Jr, James; Pajarillo, Edward Alain B; Taka, Equar et al. (2018) Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice. Neurotoxicology 64:230-239

Showing the most recent 10 out of 199 publications