Manganese (Mn) is a potent neurotoxin. We hypothesize that PARK2, a strong Parkinson's disease (PD) genetic risk factor, alters neuronal vulnerability to modifiers of cellular Mn status, particularly at the level of mitochondrial dysfunction and oxidative stress. The long-term goal of this research is to elucidate the basis of Mn-induced neurotoxicity and to identify mechanistic-based neuroprotective strategies to mitigate human Mn exposure risk. Our approach will utilize a novel high-throughput assay of intracellular Mn levels to identify small molecule modifiers of cellular Mn status and neurotoxicity. Genetic modifiers of Mn transport and toxicity will be defined and translational studies of existing and newly identified genetic and small molecule modifiers of Mn toxicity will be performed utilizing a primary human neuronal model system based upon human induced pluripotent stem cell (hiPSC) technology.
Aim 1 will identify lead compounds that alter neuronal Mn transport and toxicity in vitro using striatal and mesencephalic murine neuronal cell lines and in vivo using C. elegans.
Aim 2 will delineate functional pathways that regulate Mn transport and toxicity in vivo and in vitro.
Specific Aim 3 will test the hypothesis that human neuronal models of PD exhibit increased sensitivity to perturbations of cellular Mn status.
These specific aims hold the promise of delineating common initiator signals for the modulation of Mn neurotoxicity, shedding light on mechanisms and susceptibility associated with exposure to this metal. This dual-PI proposal is bolstered by its use of innovative state-of-the-art complimentary approaches in diverse model systems.

Public Health Relevance

The proposed studies will (1) provide novel and innovative information on functional and hierarchal relationships between small molecule modifiers of cellular manganese (Mn) status and Mn neurotoxicity, (2) identify novel therapeutic modalities for Mn-induced neurotoxicity, and (3) delineate gene-environment interactions within and across species in the integrated systems response to Mn. Our multidisciplinary approach seeks to define the functional domains that regulate key nodes of interaction between Mn and biological systems and the role genetic traits of susceptibility play in mediating molecular mechanisms of neurological disease influence by Mn exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
7R01ES010563-13
Application #
8573592
Study Section
Neurotoxicology and Alcohol Study Section (NAL)
Program Officer
Kirshner, Annette G
Project Start
2000-07-01
Project End
2017-10-31
Budget Start
2013-11-01
Budget End
2014-10-31
Support Year
13
Fiscal Year
2014
Total Cost
$551,069
Indirect Cost
$126,705
Name
Albert Einstein College of Medicine
Department
Pharmacology
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Karki, Pratap; Johnson Jr, James; Son, Deok-Soo et al. (2017) Transcriptional Regulation of Human Transforming Growth Factor-? in Astrocytes. Mol Neurobiol 54:964-976
Bryan, Miles R; Bowman, Aaron B (2017) Manganese and the Insulin-IGF Signaling Network in Huntington's Disease and Other Neurodegenerative Disorders. Adv Neurobiol 18:113-142
Ruden, Douglas M; Gurdziel, Katherine; Aschner, Michael (2017) Frontiers in Toxicogenomics in the Twenty-First Century-the Grand Challenge: To Understand How the Genome and Epigenome Interact with the Toxic Environment at the Single-Cell, Whole-Organism, and Multi-Generational Level. Front Genet 8:173
Neely, M Diana; Davison, Carrie Ann; Aschner, Michael et al. (2017) From the Cover: Manganese and Rotenone-Induced Oxidative Stress Signatures Differ in iPSC-Derived Human Dopamine Neurons. Toxicol Sci 159:366-379
Ruszkiewicz, Joanna A; Pinkas, Adi; Ferrer, Beatriz et al. (2017) Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicol Rep 4:245-259
Liu, Xinqin; Su, Peng; Meng, Shanshan et al. (2017) Role of matrix metalloproteinase-2/9 (MMP2/9) in lead-induced changes in an in vitro blood-brain barrier model. Int J Biol Sci 13:1351-1360
Li, Xiaobo; Yang, Hongbao; Wu, Shenshen et al. (2017) Suppression of PTPN6 exacerbates aluminum oxide nanoparticle-induced COPD-like lesions in mice through activation of STAT pathway. Part Fibre Toxicol 14:53
Isaacs, David; Claassen, Daniel; Bowman, Aaron B et al. (2017) Phenotypic Discordance in Siblings with Identical Compound Heterozygous PARK2 Mutations. Brain Sci 7:
Pfalzer, Anna C; Bowman, Aaron B (2017) Relationships Between Essential Manganese Biology and Manganese Toxicity in Neurological Disease. Curr Environ Health Rep 4:223-228
Hollmann, Emma K; Bailey, Amanda K; Potharazu, Archit V et al. (2017) Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells. Fluids Barriers CNS 14:9

Showing the most recent 10 out of 183 publications