Mn is an essential metal with neurotoxic properties in excess. Increasingly high exposure to manganese (Mn) in adults is associated with subclinical parkinsonian movements and postural instability, increased risk for Parkinson's disease (PD) or parkinsonism, and at the highest levels with manganism, a parkinsonian-like disorder, which is not ameliorated after cessation of exposure. Developmental and childhood Mn exposures have been associated with cognitive, behavioral as well as motor function alterations. Mn neurotoxicity involves both direct toxicity to neurons as well as neuroinflammatory responses. Here, we propose to continue our Mn neurotoxicity research program with a focus on the identification and mechanistic relationships of precise molecular targets of Mn neurotoxicity with exposures proximate to the transition from replete to neurotoxic levels of Mn ? environmentally relevant dosing. We hypothesize that threshold-level Mn neurotoxicity occurs via alteration of Mn-dependent/-activated biological functions. We will test the hypothesis as follows:
In Specific Aim 1 we will identify the mechanistic basis by which Mn alters insulin/insulin-like growth factor (IGF) related metabolic pathway signaling in neurons and the highly interconnected mTOR (mTORC1 and mTORC2), AKT and ATM/p53 metabolic signaling systems, both in worms and mammalian systems. Studies in Specific Aim 2 will refute or establish a mechanistic relationship between dopamine (DA) neurobiology and the insulin/IGF related signaling pathways in Mn neurotoxicity. Finally, in Specific Aim 3, we will define the mechanistic relationships of the insulin/IGF related signaling pathways and cellular Mn neurotoxicity outcomes. This highly interactive experimental design brings to bear innovative and complementary expertise to assess functional domains that regulate key nodes of interaction between Mn and biological systems, focusing on whether the threshold-level for Mn-induced neurotoxicity occurs via alteration of Mn-dependent/-activated biological functions. The studies are geared to address these timely objectives with translational extrapolation from the nematode to humans.

Public Health Relevance

The proposed studies will (1) identify the mechanistic basis by which manganese (Mn) alters insulin/insulin-like growth factor (IGF) related signaling and the highly interconnected mTOR (mTORC1 and mTORC2), AKT and ATM/p53 metabolic signaling systems in neurons, (2) refute or establish a mechanistic relationship between dopamine (DA) neurobiology and the insulin/IGF related signaling pathways, and (3) define the mechanistic relationships of the insulin/IGF related signaling pathways and cellular Mn neurotoxicity outcomes. Our multidisciplinary approach seeks to define the functional domains that regulate key nodes of interaction between Mn and biological systems, and determine if the threshold-level for Mn-induced neurotoxicity occurs via alteration of Mn-dependent/-activated biological functions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES010563-19
Application #
9660573
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Hollander, Jonathan
Project Start
2001-05-01
Project End
2023-03-31
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
19
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
081266487
City
Bronx
State
NY
Country
United States
Zip Code
10461
Pinkas, Adi; Cunha Martins Jr, Airton; Aschner, Michael (2018) C. elegans-An Emerging Model to Study Metal-Induced RAGE-Related Pathologies. Int J Environ Res Public Health 15:
Unoki, Takamitsu; Akiyama, Masahiro; Kumagai, Yoshito et al. (2018) Molecular Pathways Associated With Methylmercury-Induced Nrf2 Modulation. Front Genet 9:373
Bryan, Miles R; Uhouse, Michael A; Nordham, Kristen D et al. (2018) Phosphatidylinositol 3 kinase (PI3K) modulates manganese homeostasis and manganese-induced cell signaling in a murine striatal cell line. Neurotoxicology 64:185-194
Wu, Shenshen; Meng, Qingtao; Zhang, Chengcheng et al. (2018) DR4 mediates the progression, invasion, metastasis and survival of colorectal cancer through the Sp1/NF1 switch axis on genomic locus. Int J Cancer 143:289-297
da Silveira, Tássia Limana; Zamberlan, Daniele Coradine; Arantes, Leticia Priscilla et al. (2018) Quinolinic acid and glutamatergic neurodegeneration in Caenorhabditis elegans. Neurotoxicology 67:94-101
Ruszkiewicz, Joanna A; Pinkas, Adi; Miah, Mahfuzur R et al. (2018) C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol 354:126-135
Peres, Tanara V; Arantes, Leticia P; Miah, Mahfuzur R et al. (2018) Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity. Neurotox Res :
Chiou, Brian; Neal, Emma H; Bowman, Aaron B et al. (2018) Pharmaceutical iron formulations do not cross a model of the human blood-brain barrier. PLoS One 13:e0198775
Pajarillo, Edward; Johnson Jr, James; Kim, Judong et al. (2018) 17?-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. Neurotoxicology 65:280-288
Meng, Qingtao; Wu, Shenshen; Wang, Yajie et al. (2018) MPO Promoter Polymorphism rs2333227 Enhances Malignant Phenotypes of Colorectal Cancer by Altering the Binding Affinity of AP-2?. Cancer Res 78:2760-2769

Showing the most recent 10 out of 199 publications