Chronic exposure to high concentrations of manganese (Mn) results in adverse neurological health effects commonly referred to as manganism. Manganese neurotoxicity is a significant toxicological problem resulting from the use of manganese as a gasoline additive, and in welding, metal industries, pesticide manufacturing, pharmaceutical preparations, infant food formulations, and battery production. Manganese predominantly accumulates in the basal ganglia structures and causes mitochondrial dysfunction, oxidative stress, and apoptosis. However, cellular and molecular mechanisms underlying manganese neurotoxicity are poorly understood. We have been studying mitochondrial-dependent apoptotic signaling in manganese neurotoxicity and found that protein kinase C-delta (PKCd), a member of the novel PKC isoform family, is persistently activated by caspase-3 to promote apoptosis during manganese exposure. While studying the apoptotic signaling pathway in cell culture models of manganese neurotoxicity, we also unexpectedly identified that PKCd is upregulated both in protein and mRNA levels during manganese treatment. Further analysis of the PKCd promoter revealed that two key transcription factors, NFkB and SP1, regulate PKCd gene expression. Thus, our competitive renewal proposal aims to systematically characterize this gene-environment interaction by studying novel molecular mechanisms underlying manganese-induced upregulation of the proapoptotic PKCd gene. We propose to complete the study by pursuing the following specific aims: i) To characterize upregulation of an oxidative stress-sensitive proapoptotic kinase PKCd in mouse primary neuronal cultures and animal models following manganese exposure, ii) To investigate molecular mechanisms of manganese-induced upregulation of PKCd by examining its transcriptional regulation of a PKCd promoter, and iii) To further define the functional role of NFkB and SP1-dependent PKCd upregulation in manganese-induced neuronal damage during chronic manganese exposure. Cellular, molecular, and neurochemical approaches in relevant cell cultures and animal models of manganese neurotoxicity will be used. We anticipate that the proposed study will provide comprehensive information about how environmental exposure to manganese can alter the expression of the key proapoptotic gene PKCd to augment manganese neurotoxicity, and this knowledge may advance the development of novel translational approaches for the treatment of manganese neurotoxicity.

Public Health Relevance

Environmental exposure to excessive manganese impairs basal ganglia function, resulting in a neurological disorder relatively similar to Parkinsonism commonly known as Manganism. Manganese exposure is of serious concern due to the increased incidences of extrapyramidal neurological symptoms among miners and industrial workers, including welders. Manganese predominantly accumulates in the basal ganglia structures and causes mitochondrial dysfunction, oxidative stress, and apoptosis. However, cellular and molecular mechanisms underlying manganese neurotoxicity are poorly understood. The proposed study will elucidate the neurotoxic mechanisms underlying manganese induced upregulation of a proapoptotic kinase PKCd and its functional relevance to manganese neurotoxicity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES010586-13
Application #
8462247
Study Section
Special Emphasis Panel (ZRG1-IFCN-C (04))
Program Officer
Lawler, Cindy P
Project Start
2000-08-05
Project End
2016-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
13
Fiscal Year
2013
Total Cost
$316,296
Indirect Cost
$95,796
Name
Iowa State University
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
005309844
City
Ames
State
IA
Country
United States
Zip Code
50011
Langley, Monica R; Ghaisas, Shivani; Ay, Muhammet et al. (2018) Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson's disease: Relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology 64:240-255
Harischandra, Dilshan S; Ghaisas, Shivani; Rokad, Dharmin et al. (2018) Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson's disease: Relevance to ?-synuclein misfolding in metal neurotoxicity. Neurotoxicology 64:267-277
Harischandra, Dilshan S; Ghaisas, Shivani; Rokad, Dharmin et al. (2017) Exosomes in Toxicology: Relevance to Chemical Exposure and Pathogenesis of Environmentally Linked Diseases. Toxicol Sci 158:3-13
Brenza, Timothy M; Ghaisas, Shivani; Ramirez, Julia E Vela et al. (2017) Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine 13:809-820
Ngwa, Hilary Afeseh; Ay, Muhammet; Jin, Huajun et al. (2017) Neurotoxicity of Vanadium. Adv Neurobiol 18:287-301
Rokad, Dharmin; Ghaisas, Shivani; Harischandra, Dilshan S et al. (2017) Role of neurotoxicants and traumatic brain injury in ?-synuclein protein misfolding and aggregation. Brain Res Bull 133:60-70
Ay, Muhammet; Luo, Jie; Langley, Monica et al. (2017) Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease. J Neurochem 141:766-782
Liu, Man; Shi, Guangbin; Yang, Kai-Chien et al. (2017) Role of protein kinase C in metabolic regulation of the cardiac Na+ channel. Heart Rhythm 14:440-447
Kim, Dong-Suk; Jin, Huajun; Anantharam, Vellareddy et al. (2017) p73 gene in dopaminergic neurons is highly susceptible to manganese neurotoxicity. Neurotoxicology 59:231-239
Gordon, Richard; Singh, Neeraj; Lawana, Vivek et al. (2016) Protein kinase C? upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease. Neurobiol Dis 93:96-114

Showing the most recent 10 out of 69 publications