Air pollution is positively associated with an increased daily incidence of myocardial infarction and cardiovascular mortality. Recent findings strongly implicate a role for fresh vehicular exhaust, clearly showing elevated coronary events related acutely to traffic exposure. Clinical and experimental research suggests that air pollutants can acutely induce a vasoconstrictive mechanism, though a clear connection between such studies and the ultimate cardiac sequelae has not been confirmed. The proposed study will seek to validate our previous observations that specific gaseous components of engine exhaust, which are a significant contributor to ambient air pollution, may have pathological vasoactive properties by blunting coronary dilation and enhancing constriction. ECG and vascular abnormalities in ApoE-/- mice occurred when exposed by inhalation to fresh diesel or gasoline exhaust, but not aged, resuspended road dust, suggest that certain compounds in fresh emissions that drive cardiovascular responses may be lost in collected or concentrated particles. Many volatile and semivolatile compounds in fresh emissions can exist in both the gaseous and particulate phases of whole exhaust, and it may be that attempts to ascertain toxicity of filter-collected or concentrated PM may underestimate the adverse health effects by eliminating the gaseous co-pollutants. We have three primary hypotheses to test in this study: (1) We hypothesize that gaseous components of whole emissions can exert effects directly on vascular tissue as well as indirectly by oxidatively modifying endogenous circulating phospholipids, thereby altering the native function of those lipids. Our findings of oxidized low density lipoprotein in the circulation and lipid peroxidation by-products in the vasculature of engine emission-exposed mice, in the absence of overt pulmonary or systemic inflammation suggests that there may be a mild oxidative process in the lung that transfers systemically;(2) We hypothesize that the predominant mechanism driving impaired dilatory function is the formation of peroxynitrite and uncoupling of endothelial nitric oxide synthase. Nitrotyrosine is upregulated in the vasculature following chronic, low-level gasoline exhaust exposure, but it is unknown to what degree peroxynitrite impacts acutely on the vessels;and (3) We hypothesize that observed T-wave abnormalities reflect emission-induced impairment of endothelial cell function, leading to diminished coronary flow and myocardial ischemia in vulnerable subjects. Findings of air pollution-induced rat and mouse ECG abnormalities from several laboratories have not been validated in terms of absolute cardiovascular pathology;we predict diminished coronary flow and mild ischemia will occur in the susceptible mouse strain (ApoE-/-).

Public Health Relevance

Cardiovascular effects of air pollution are becoming recognized as a major public health concern. These studies will examine both biological and chemical mechanisms of air pollution-induced adverse coronary events. Results from these studies will assist in the assessment and management of personal risk of health effects from air pollution exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES014639-04
Application #
7775129
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Nadadur, Srikanth
Project Start
2008-05-01
Project End
2013-02-28
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
4
Fiscal Year
2010
Total Cost
$331,739
Indirect Cost
Name
University of New Mexico
Department
Other Health Professions
Type
Schools of Pharmacy
DUNS #
868853094
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Harmon, Molly E; Lewis, Johnnye; Miller, Curtis et al. (2018) Arsenic association with circulating oxidized low-density lipoprotein in a Native American community. J Toxicol Environ Health A 81:535-548
Tyler, Christina R; Noor, Shahani; Young, Tamara L et al. (2018) Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure. Toxicol Sci 163:123-139
Oakley, Robert H; Campen, Matthew J; Paffett, Michael L et al. (2018) Muscle-specific regulation of right ventricular transcriptional responses to chronic hypoxia-induced hypertrophy by the muscle ring finger-1 (MuRF1) ubiquitin ligase in mice. BMC Med Genet 19:175
Olvera Alvarez, Hector A; Kubzansky, Laura D; Campen, Matthew J et al. (2018) Early life stress, air pollution, inflammation, and disease: An integrative review and immunologic model of social-environmental adversity and lifespan health. Neurosci Biobehav Rev 92:226-242
Aragon, Mario J; Topper, Lauren; Tyler, Christina R et al. (2017) Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci U S A 114:E1968-E1976
Li, Rongsong; Yang, Jieping; Saffari, Arian et al. (2017) Ambient Ultrafine Particle Ingestion Alters Gut Microbiota in Association with Increased Atherogenic Lipid Metabolites. Sci Rep 7:42906
Harmon, Molly E; Lewis, Johnnye; Miller, Curtis et al. (2017) Residential proximity to abandoned uranium mines and serum inflammatory potential in chronically exposed Navajo communities. J Expo Sci Environ Epidemiol 27:365-371
Harmon, Molly E; Campen, Matthew J; Miller, Curtis et al. (2016) Associations of Circulating Oxidized LDL and Conventional Biomarkers of Cardiovascular Disease in a Cross-Sectional Study of the Navajo Population. PLoS One 11:e0143102
Mumaw, Christen L; Levesque, Shannon; McGraw, Constance et al. (2016) Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors. FASEB J 30:1880-91
Tyler, Christina R; Zychowski, Katherine E; Sanchez, Bethany N et al. (2016) Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes. Part Fibre Toxicol 13:64

Showing the most recent 10 out of 41 publications