Exposure to ambient particulate matter (PM) air pollution accounts up to 3.1 years of life lost in the most compared with the least polluted US cities. The mortality associated with acute exposure to ambient PM is largely due to ischemic cardiovascular events. While the mechanisms linking PM exposure with acute cardiovascular events are not fully understood, human and animal data increasingly suggest that PM-induced alterations in hemostasis resulting from lung inflammation and activation of the sympathetic nervous system play causal roles. In the first cycle of this award, we reported that acute exposure to PM causes lung macrophages to release interleukin-6 (IL-6), which accelerates arterial thrombosis in mice, a finding supported by human studies. In our preliminary data we observed that PM-induced opening of Calcium-Release Activated Calcium (CRAC) channels and mitochondrial reactive oxygen species (ROS) play a critical role in PM-induced IL-6 release. We also observed that mice exposed to inhaled PM had increased lung and systemic levels of epinephrine and norepinephrine, directly confirming data from human exposure studies suggesting that PM exposure activates the sympathetic nervous system. Surprisingly, the administration of a ?-blocker or genetic loss of the ?2-adrenergic receptor (?2AR) inhibited the PM-induced release of IL-6 and the subsequent prothrombotic state. Conversely, inhalation of a long acting ?2-agonist (formoterol) augmented the PM-induced release of IL-6 and the resulting prothrombotic state. These results suggest that activation of the sympathetic nervous system in response to PM augments the release of IL-6 from alveolar macrophages and contributes to resulting prothrombotic state. In the current proposal, we have developed 3 specific aims to test the hypothesis that stimulation of the ?2AR by locally derived catecholamines augments the PM-induced release of IL-6 from alveolar macrophages and the resulting prothrombotic state through CRAC channel and ROS- mediated augmentation of cAMP production.
In aim 1, we will determine whether the activation of alveolar macrophage ?2ARs is required for the PM-induced release of IL-6 and the resulting prothrombotic state.
In aim 2, we will determine whether PM-induced opening of CRAC channels and generation of mitochondrial ROS amplify the ?2AR/cAMP-dependent augmentation of IL-6 release.
In aim 3, we will determine whether autocrine catecholamine signaling in alveolar macrophages augments PM-induced IL-6 release and the resulting prothrombotic state. Our findings provide a novel mechanistic paradigm linking PM-induced lung inflammation and activation of the sympathetic nervous system with an increased risk of thrombosis leading to ischemic cardiovascular events. In addition, our observation that the administration of a widely used inhaled long acting ?2AR agonist augments PM-induced IL-6 release and thrombosis provides a potential mechanism to explain the increasing body of evidence showing that the use of inhaled ?2-agonists is associated with increased mortality in patients with COPD and asthma.

Public Health Relevance

Exposure to ambient particulate matter (PM) air pollution accounts up to 3.1 years of life lost in the most compared with the least polluted US cities. This application seeks to determine how activation of the sympathetic nervous system worsens lung inflammation and the tendency toward clotting that follows exposure to PM. Understanding these mechanisms will help develop strategies to prevent PM associated deaths and may have important implications for patients with COPD and asthma who use inhaled ?-adrenergic agonists.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
7R01ES015024-08
Application #
8686840
Study Section
Special Emphasis Panel (ZRG1-VH-J (02))
Program Officer
Schug, Thaddeus
Project Start
2006-09-01
Project End
2017-05-31
Budget Start
2014-08-13
Budget End
2015-05-31
Support Year
8
Fiscal Year
2014
Total Cost
$365,234
Indirect Cost
$125,898
Name
University of Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Budinger, G R Scott; Mutlu, Gökhan M (2014) ?2-agonists and acute respiratory distress syndrome. Am J Respir Crit Care Med 189:624-5
Camargo Jr, Carlos A; Budinger, G R Scott; Escobar, Gabriel J et al. (2014) Promotion of lung health: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc 11 Suppl 3:S125-38
Radigan, Kathryn A; Morales-Nebreda, Luisa; Soberanes, Saul et al. (2014) Impaired clearance of influenza A virus in obese, leptin receptor deficient mice is independent of leptin signaling in the lung epithelium and macrophages. PLoS One 9:e108138
Chiarella, Sergio E; Soberanes, Saul; Urich, Daniela et al. (2014) ??-Adrenergic agonists augment air pollution-induced IL-6 release and thrombosis. J Clin Invest 124:2935-46
Morales-Nebreda, Luisa; Mutlu, Gökhan M; Scott Budinger, G R et al. (2014) Loss of TLR4 does not prevent influenza A-induced mortality. Am J Respir Crit Care Med 189:1280-1
Budinger, G R Scott; Mutlu, Gokhan M (2013) Balancing the risks and benefits of oxygen therapy in critically III adults. Chest 143:1151-62
Misharin, Alexander V; Morales-Nebreda, Luisa; Mutlu, Gokhan M et al. (2013) Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol 49:503-10
Radigan, Kathryn A; Urich, Daniela; Misharin, Alexander V et al. (2012) The effect of rosuvastatin in a murine model of influenza A infection. PLoS One 7:e35788
Mutlu, Gökhan M; Budinger, G R Scott; Wu, Minghua et al. (2012) Proteasomal inhibition after injury prevents fibrosis by modulating TGF-?(1) signalling. Thorax 67:139-46
Dada, Laura; Gonzalez, Angel R; Urich, Daniela et al. (2012) Alcohol worsens acute lung injury by inhibiting alveolar sodium transport through the adenosine A1 receptor. PLoS One 7:e30448

Showing the most recent 10 out of 30 publications