Developmental exposure to natural or environmental estrogens predisposes to prostate carcinogenesis with aging;however, the molecular underpinnings of this phenomenon are unclear. We present evidence that developmental reprogramming of the prostate by estrogens may be mediated, in part, through epigenetic alterations. Using methylation-sensitive fingerprinting (MSRP) as an initial screen for genome-wide methylation changes, we identified multiple prostatic genes whose methylation status was permanently altered in rats as a result of neonatal estradiol and bisphenol A (BPA) exposures at environmentally relevant doses. Detailed characterization of phosphodiesterase 4D4 (PDE4D4) and HPCAL, enzymes involved in cAMP breakdown and formation, respectively, revealed aberrant promoter CpG island methylation patterns with resultant changes in gene transcription as the animals aged. Importantly, these epigenetic alterations were associated with increased susceptibility to hormonal carcinogenesis of the rat prostate gland. Thus we hypothesize that early estrogenic imprinting of the prostate gland with resultant predisposition to carcinogenesis with aging is mediated through epigenetic modifications which permanently affect gene expression in the gland. The objectives of the present proposal are to further characterize our model of developmental reprogramming by low dose estradiol or BPA, to characterize in detail the prostatic gene methylation and transcriptional alterations which result from early life estrogenic exposures and to identify the methylation candidate genes contribute to increased carcinogenic potential in the developmentally estrogenized prostate glands.
In Aim 1, we will determine the dose-response relationship for prostatic- BPA effects and establish the developmental windows of susceptibility. We will also use a novel tissue recombination model to test whether BPA modifies carcinogenic susceptibility and methylation patterns in human prostate-like structures.
In Aim 2, we will characterize in detail the altered rat prostate methylome with resultant alterations in gene expression as a result of developmental exposures to environmentally relevant doses of BPA or estradiol. MSRP and methylation arrays will be used to expand our prostatic screen to identify a full panel of candidate genes and a stringent algorithm will be followed to identify candidates with regulatory CpG islands. Site-specific methylation and resultant transcriptional regulation will be confirmed.
In Aim 3, we will directly test whether the genes epigenetically modified by estrogenic exposures play an active role in prostate gland carcinogenesis using a variety of in vitro and in vivo studies.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Schug, Thaddeus
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois at Chicago
Schools of Medicine
United States
Zip Code
Leung, Yuet-Kin; Chan, Queeny Kwan-Yi; Ng, Chi-Fai et al. (2014) Hsa-miRNA-765 as a key mediator for inhibiting growth, migration and invasion in fulvestrant-treated prostate cancer. PLoS One 9:e98037
Prins, Gail S; Hu, Wen-Yang; Shi, Guang-Bin et al. (2014) Bisphenol A promotes human prostate stem-progenitor cell self-renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology 155:805-17
Lee, Ming-Tsung; Ouyang, Bin; Ho, Shuk-Mei et al. (2013) Differential expression of estrogen receptor beta isoforms in prostate cancer through interplay between transcriptional and translational regulation. Mol Cell Endocrinol 376:125-35
Lee, Ming-Tsung; Leung, Yuet-Kin; Chung, Irving et al. (2013) Estrogen receptor * (ER*1) transactivation is differentially modulated by the transcriptional coregulator Tip60 in a cis-acting element-dependent manner. J Biol Chem 288:25038-52
Brunst, Kelly J; Leung, Yuet-Kin; Ryan, Patrick H et al. (2013) Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. J Allergy Clin Immunol 131:592-4.e1-3
Ouyang, Bin; Bernstein, David I; Lummus, Zana L et al. (2013) Interferon-? promoter is hypermethylated in blood DNA from workers with confirmed diisocyanate asthma. Toxicol Sci 133:218-24
Hu, Wen-Yang; Shi, Guang-Bin; Hu, Dan-Ping et al. (2012) Actions of estrogens and endocrine disrupting chemicals on human prostate stem/progenitor cells and prostate cancer risk. Mol Cell Endocrinol 354:63-73
Tang, Wan-yee; Morey, Lisa M; Cheung, Yuk Yin et al. (2012) Neonatal exposure to estradiol/bisphenol A alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life. Endocrinology 153:42-55
Luccio-Camelo, Doug C; Prins, Gail S (2011) Disruption of androgen receptor signaling in males by environmental chemicals. J Steroid Biochem Mol Biol 127:74-82
Howard, Timothy D; Ho, Shuk-Mei; Zhang, Li et al. (2011) Epigenetic changes with dietary soy in cynomolgus monkeys. PLoS One 6:e26791

Showing the most recent 10 out of 33 publications