Ionizing radiation and normal aerobic metabolism both lead to the formation of reactive oxygen species (ROS), which can give rise to a spectrum of DNA modifications including single-nucleobase lesions, strand breaks, and crosslink lesions. The emphasis of the present application is placed on understanding the cellular recognition and repair of the under-explored, radiation-induced intrastrand and interstrand crosslink lesions of DNA. The proposed experiments are organized according to three specific aims.
In Aim #1, we will employ our newly developed shuttle vector method to explore how radiation-induced intrastrand crosslink lesions perturb DNA transcription and how they are repaired in human cells.
In Aim #2, we will investigate the formation of radiation-induced interstrand crosslink lesions and the role of NEIL1 in repairing the intrastrand and interstrand DNA crosslink lesions induced by ionizing radiation and other agents.
In Aim #3, we will employ a quantitative proteomic method to identify cellular proteins that are capable of binding specifically to duplex DNA harboring a radiation-induced crosslink lesion, and we will assess the roles of these newly identified proteins in repairing the crosslink lesions in mammalian cells. The outcome of the proposed research will provide novel insights into the repair of the radiation-induced intrastrand and interstrand crosslink lesions, and it may result in a paradigm shift in our understanding of the repair of this type of DNA lesions by revealing the novel role of DNA glycosylase NEIL1 in repairing these lesions and by discovering new damage recognition and DNA repair proteins acting on radiation-induced crosslink lesions. Additionally, the proposed proteomic experiments may afford the identification of novel proteins involved in DNA damage response signaling. Therefore, the proposed research will improve significantly our understanding of the adverse human health effects emanating from exposure to exogenous ionizing radiation and it may ultimately lead to the development of enhanced cancer radiotherapy.

Public Health Relevance

Exposure to reactive oxygen species, arising from endogenous metabolism and exogenous ionizing radiation, leads to the formation of a spectrum of DNA modifications including interstrand and intrastrand crosslink lesions. The emphasis of the present application is placed on understanding how these DNA crosslink lesions are repaired in mammalian cells, which may provide important insights into the implications of these DNA modifications in human diseases and afford new knowledge for designing better cancer radiation therapy.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Radiation Therapeutics and Biology Study Section (RTB)
Program Officer
Reinlib, Leslie J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Riverside
Schools of Earth Sciences/Natur
United States
Zip Code
Xiao, Yongsheng; Wang, Yinsheng (2016) Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry. Mass Spectrom Rev 35:601-19
You, Changjun; Wang, Yinsheng (2016) Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts. Acc Chem Res 49:205-13
Dai, Xiaoxia; Rulten, Stuart L; You, Changjun et al. (2015) Identification and Functional Characterizations of N-Terminal α-N-Methylation and Phosphorylation of Serine 461 in Human Poly(ADP-ribose) Polymerase 3. J Proteome Res 14:2575-82
Perez, Lizeth; Ghang, Yoo-Jin; Williams, Preston B et al. (2015) Cell and Protein Recognition at a Supported Bilayer Interface via In Situ Cavitand-Mediated Functional Polymer Growth. Langmuir 31:11152-7
Guo, Lei; Xiao, Yongsheng; Fan, Ming et al. (2015) Profiling global kinome signatures of the radioresistant MCF-7/C6 breast cancer cells using MRM-based targeted proteomics. J Proteome Res 14:193-201
Bing, Tao; Shangguan, Dihua; Wang, Yinsheng (2015) Facile Discovery of Cell-Surface Protein Targets of Cancer Cell Aptamers. Mol Cell Proteomics 14:2692-700
Zhang, Zhi-Min; Rothbart, Scott B; Allison, David F et al. (2015) An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1. Cell Rep 12:1400-6
Liu, Shuo; Jiang, Ji; Li, Lin et al. (2015) Arsenite Targets the Zinc Finger Domains of Tet Proteins and Inhibits Tet-Mediated Oxidation of 5-Methylcytosine. Environ Sci Technol 49:11923-31
You, Changjun; Wang, Yinsheng (2015) Quantitative measurement of transcriptional inhibition and mutagenesis induced by site-specifically incorporated DNA lesions in vitro and in vivo. Nat Protoc 10:1389-406
Cai, Qian; Fu, Lijuan; Wang, Zi et al. (2014) α-N-methylation of damaged DNA-binding protein 2 (DDB2) and its function in nucleotide excision repair. J Biol Chem 289:16046-56

Showing the most recent 10 out of 26 publications