Ionizing radiation and normal aerobic metabolism both lead to the formation of reactive oxygen species (ROS), which can give rise to a spectrum of DNA modifications including single-nucleobase lesions, strand breaks, and crosslink lesions. The emphasis of the present application is placed on understanding the cellular recognition and repair of the under-explored, radiation-induced intrastrand and interstrand crosslink lesions of DNA. The proposed experiments are organized according to three specific aims.
In Aim #1, we will employ our newly developed shuttle vector method to explore how radiation-induced intrastrand crosslink lesions perturb DNA transcription and how they are repaired in human cells.
In Aim #2, we will investigate the formation of radiation-induced interstrand crosslink lesions and the role of NEIL1 in repairing the intrastrand and interstrand DNA crosslink lesions induced by ionizing radiation and other agents.
In Aim #3, we will employ a quantitative proteomic method to identify cellular proteins that are capable of binding specifically to duplex DNA harboring a radiation-induced crosslink lesion, and we will assess the roles of these newly identified proteins in repairing the crosslink lesions in mammalian cells. The outcome of the proposed research will provide novel insights into the repair of the radiation-induced intrastrand and interstrand crosslink lesions, and it may result in a paradigm shift in our understanding of the repair of this type of DNA lesions by revealing the novel role of DNA glycosylase NEIL1 in repairing these lesions and by discovering new damage recognition and DNA repair proteins acting on radiation-induced crosslink lesions. Additionally, the proposed proteomic experiments may afford the identification of novel proteins involved in DNA damage response signaling. Therefore, the proposed research will improve significantly our understanding of the adverse human health effects emanating from exposure to exogenous ionizing radiation and it may ultimately lead to the development of enhanced cancer radiotherapy.

Public Health Relevance

Exposure to reactive oxygen species, arising from endogenous metabolism and exogenous ionizing radiation, leads to the formation of a spectrum of DNA modifications including interstrand and intrastrand crosslink lesions. The emphasis of the present application is placed on understanding how these DNA crosslink lesions are repaired in mammalian cells, which may provide important insights into the implications of these DNA modifications in human diseases and afford new knowledge for designing better cancer radiation therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES019873-03
Application #
8608525
Study Section
Radiation Therapeutics and Biology Study Section (RTB)
Program Officer
Reinlib, Leslie J
Project Start
2012-05-01
Project End
2017-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
3
Fiscal Year
2014
Total Cost
$304,722
Indirect Cost
$104,247
Name
University of California Riverside
Department
Chemistry
Type
Schools of Earth Sciences/Natur
DUNS #
627797426
City
Riverside
State
CA
Country
United States
Zip Code
92521
Guo, Lei; Xiao, Yongsheng; Fan, Ming et al. (2015) Profiling global kinome signatures of the radioresistant MCF-7/C6 breast cancer cells using MRM-based targeted proteomics. J Proteome Res 14:193-201
Xiao, Yongsheng; Ji, Debin; Guo, Lei et al. (2014) Comprehensive characterization of (S)GTP-binding proteins by orthogonal quantitative (S)GTP-affinity profiling and (S)GTP/GTP competition assays. Anal Chem 86:4550-8
Cai, Qian; Fu, Lijuan; Wang, Zi et al. (2014) ?-N-methylation of damaged DNA-binding protein 2 (DDB2) and its function in nucleotide excision repair. J Biol Chem 289:16046-56
Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng (2014) Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts. Toxicol Appl Pharmacol 277:21-9
Prins, John M; Fu, Lijuan; Guo, Lei et al. (2014) Cd²?-induced alteration of the global proteome of human skin fibroblast cells. J Proteome Res 13:1677-87
Xiao, Yongsheng; Wang, Yinsheng (2014) Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry. Mass Spectrom Rev :
Haque, Mohammad Mojibul; Sun, Huabing; Liu, Shuo et al. (2014) Photoswitchable formation of a DNA interstrand cross-link by a coumarin-modified nucleotide. Angew Chem Int Ed Engl 53:7001-5
Zhai, Qianqian; Wang, Pengcheng; Wang, Yinsheng (2014) Cytotoxic and mutagenic properties of regioisomeric O²-, N3- and O?-ethylthymidines in bacterial cells. Carcinogenesis 35:2002-6
Yu, Qiong-Wei; Li, Xiao-Shui; Xiao, Yongsheng et al. (2014) Sequential enrichment with titania-coated magnetic mesoporous hollow silica microspheres and zirconium arsenate-modified magnetic nanoparticles for the study of phosphoproteome of HL60 cells. J Chromatogr A 1365:54-60
Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng (2014) Application of adenosine triphosphate affinity probe and scheduled multiple-reaction monitoring analysis for profiling global kinome in human cells in response to arsenite treatment. Anal Chem 86:10700-7

Showing the most recent 10 out of 18 publications