The proposed study will address the hypothesis that exposure to traffic-related air pollution (TRAP) during critical periods of brain development is significantly associated with altered neurobehavior including deficits in cognition, attention, memory, executive function, global intelligence, neuromotor function, behavioral regulation, and altered brain anatomy and physiology. Exposure to environmental neurotoxicants prenatally and during early childhood has been associated with neurobehavioral deficits and altered brain structure. Recent toxicological evidence suggests that TRAP, a complex mixture of metals, elemental and organic carbon, polycyclic aromatic hydrocarbons, and fine and ultrafine particulate matter, is capable of inducing neuroinflammation and translocation across the blood-brain barrier resulting in direct exposure to the brain.
The aims of this study are to determine if children exposed to increased levels of TRAP during early stages of brain development have neurobehavioral deficits in childhood and to assess the physiologic impact of TRAP exposure on brain structure, organization, and function. The Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS), a prospective cohort study, provides an extraordinary opportunity to accomplish these aims. The CCAAPS cohort was recruited to examine the association between traffic exhaust and the development of allergic disease and asthma. Children enrolled in CCAAPS must have resided either less than 400 m or greater than 1500 m from a major highway at the time of their birth. TRAP exposure during early childhood has been characterized using ambient air monitoring and spatial models. Clinical health assessments, biomarkers, health questionnaires, and addresses of all home, daycare, and school locations have been collected at ages 1-4 and 7. The proposed study is innovative as it exploits all of the collected health, air monitoring, and modeling data and extends the focus of the CCAAPS cohort to examine the impact of early childhood TRAP exposure on neurobehavior and neuroimaging outcomes. A carefully selected battery of valid and reliable tests will be administered at age 11-12 to assess neurobehavioral development. Another unique aspect is the proposed nested study of children with high and low exposure to TRAP during early childhood to assess the physiologic impact of TRAP on the developing brain using quantitative magnetic resonance imaging (MRI). The anticipated results will address a significant gap in scientific knowledge of the potential neurotoxicity of a ubiquitous environmental exposure with far-reaching consequences for future studies and public health.

Public Health Relevance

The association between exposure to traffic-related air pollution (TRAP) during early childhood and neurobehavioral and neuroimaging outcomes has not been thoroughly examined. The objective of the proposed study is to determine if children exposed to increased levels of TRAP during critical time periods of brain development have altered neurobehavior in childhood as measured by a battery of valid and reliable tests and to assess the physiologic impact of TRAP exposure on brain structure, organization, and function using quantitative magnetic resonance imaging (MRI). These results will fill important gaps in current scientific knowledge related to the relationship between TRAP exposure and neurobehavior and central nervous system effects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES019890-02
Application #
8500278
Study Section
Neurological, Aging and Musculoskeletal Epidemiology (NAME)
Program Officer
Gray, Kimberly A
Project Start
2012-07-01
Project End
2017-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
2
Fiscal Year
2013
Total Cost
$631,337
Indirect Cost
$139,899
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Brokamp, Cole; LeMasters, Grace K; Ryan, Patrick H (2016) Residential mobility impacts exposure assessment and community socioeconomic characteristics in longitudinal epidemiology studies. J Expo Sci Environ Epidemiol 26:428-34
Nanda, Maya K; LeMasters, Grace K; Levin, Linda et al. (2016) Allergic Diseases and Internalizing Behaviors in Early Childhood. Pediatrics 137:
Zhang, Zhonghua; Biagini Myers, Jocelyn M; Brandt, Eric B et al. (2016) β-Glucan exacerbates allergic asthma independent of fungal sensitization and promotes steroid-resistant TH2/TH17 responses. J Allergy Clin Immunol :
Ji, Hong; Biagini Myers, Jocelyn M; Brandt, Eric B et al. (2016) Air pollution, epigenetics, and asthma. Allergy Asthma Clin Immunol 12:51
Brandt, Eric B; Myers, Jocelyn M Biagini; Ryan, Patrick H et al. (2015) Air pollution and allergic diseases. Curr Opin Pediatr 27:724-35
Brandt, Eric B; Biagini Myers, Jocelyn M; Acciani, Thomas H et al. (2015) Exposure to allergen and diesel exhaust particles potentiates secondary allergen-specific memory responses, promoting asthma susceptibility. J Allergy Clin Immunol 136:295-303.e7
Brunst, Kelly J; Ryan, Patrick H; Brokamp, Cole et al. (2015) Timing and Duration of Traffic-related Air Pollution Exposure and the Risk for Childhood Wheeze and Asthma. Am J Respir Crit Care Med 192:421-7
LeMasters, Grace; Levin, Linda; Bernstein, David I et al. (2015) Secondhand smoke and traffic exhaust confer opposing risks for asthma in normal and overweight children. Obesity (Silver Spring) 23:32-6
Newman, Nicholas C; Ryan, Patrick; Lemasters, Grace et al. (2013) Traffic-related air pollution exposure in the first year of life and behavioral scores at 7 years of age. Environ Health Perspect 121:731-6