Demonstrating or verifying a current or past exposure to an environmental mitochondrial toxin is extraordinarily difficult. For any given toxin, tissue distribution and pharmacokinetics of the toxin may be unknown. Low-level exposure may not produce a clinical phenotype, and depending on the assay chosen, functional mitochondrial impairment or enzyme inhibition may not persist beyond the acute exposure (or metabolism/excretion of the toxin). Thus, there is a pressing need to develop a biomarker for exposure to environmental mitochondrial inhibitors that is (i) sensitive, (i) at least semi- quantitative, (iii) enduring after toxin exposure has ceased, (iv) stable after specimen collection, and (v) highly reproducible. Another problem is that after exposure to certain mitochondrial toxins, some tissues are selectively vulnerable to damage while others are resistant. For example, when rats are exposed to rotenone chronically, they develop selective degeneration of the nigrostriatal dopamine system similar to Parkinson disease. The molecular and physiological basis for such heterogeneity in biological response is obscure and no biomarker of selective vulnerability exists. Our preliminary data suggest that mtDNA damage in blood or skeletal muscle may provide a biomarker of past or ongoing toxin exposure, and nuclear DNA (nDNA) damage may be a preclinical biomarker of selective vulnerability. For these studies, we will use an extremely sensitive PCR-based assay of DNA damage (both mtDNA &nDNA) that simultaneously allows assessment of multiple forms of damage, and further allows assessment of mtDNA and nDNA damage in the same samples, without a need for mitochondrial isolation.
The Specific Aims of this proposal are: 1. (a) Determine how soon after rotenone exposure mtDNA damage can be detected in blood and muscle. (b) Determine the duration, after a single exposure, that mtDNA damage can be detected. 2. Determine the minimal level of complex I inhibition that is required to cause detectable mtDNA damage. 3. Determine whether nuclear DNA (nDNA) damage is a marker of tissues that are selectively vulnerable to mitochondrial toxin-induced degeneration.!! 4. (a) Determine whether peripheral mtDNA damage is a common feature of systemically active complex I inhibitors. (b) Determine whether mtDNA damage is a common feature of other ETC inhibitors, including those acting at complexes II-IV. Preliminary results suggest our assay will provide a biomarker that is relatively simple, extremely sensitive, quantitative, enduring after exposure has ceased, stable after collection, and highly reproducible.

Public Health Relevance

Exposures to environmental mitochondrial toxins are extremely difficult to demonstrate or verify. We have employed an extremely sensitive assay for mitochondrial DNA damage and have shown that it can detect subclinical exposures, and can detect an exposure even after the primary affect of the toxin has ended. We now propose to further characterize the sensitivity and utility of this biomarker.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LWJ-J (MI))
Program Officer
Hollander, Jonathan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Sanders, Laurie H; McCoy, Jennifer; Hu, Xiaoping et al. (2014) Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiol Dis 70:214-23
Sanders, Laurie H; Laganiere, Josee; Cooper, Oliver et al. (2014) LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiol Dis 62:381-6
Sanders, Laurie H; Greenamyre, J Timothy (2013) Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med 62:111-20
Cannon, Jason R; Greenamyre, J Timothy (2013) Gene-environment interactions in Parkinson's disease: specific evidence in humans and mammalian models. Neurobiol Dis 57:38-46