Numerous epidemiological studies have shown the adverse effects of traffic-related air pollution exposure on asthma and related phenotypes. Recent emerging evidence suggests that altered hematopoietic stem/progenitor cell (HSPC) homeostasis is one potentially important biological mechanism mediating the adverse effects of traffic-related air pollution on asthma. For example, hematopoietic progenitor cells (HPCs) are mobilized following inflammatory events in the lung, suggesting that these bone marrow (BM)-derived cells directly contribute to lung repair in response to injury. Accumulation of eosinophils and basophils in the lung is also a characteristic of allergic inflammation and is directly related to changes in the levels of eosinophil and basophil progenitors in the peripheral circulation. It is also likely that genetic factors modulate these effects, although direct evidence for this notion is currently lacking. Our provocative preliminary findings support this concept and demonstrate that the frequency of circulating HPCs in response to diesel exhaust particles (DEP), a model traffic-related pollutant, varies ~8-fold among 9 inbred mouse strains and is inversely correlated with airway hyperreactivity (AHR). Based on these observations and the integrative approaches currently being used to investigate gene-environment (GxE) interactions in asthma, we have assembled a highly experienced trandisciplinary research team to comprehensively investigate the interrelationships between genetic factors, traffic-related air pollution, HSPC homeostasis, and asthma. As part of this ViCTER proposal, this group will lead three collaborative research projects aimed at 1) determining the effects of DEP on the repertoire of HSPC subtypes in BM and peripheral blood and their relationships to AHR in a panel of inbred mouse strains; 2) applying innovative statistical genetics methods to identify GxE association for HSPCs and asthma-related phenotypes in both mice and humans;and 3) determining the effects of genetic factors and traffic-related air pollution exposure during prenatal development on HSPC subtypes in human umbilical cord blood samples. These coordinated activities involve well-characterized human cohorts, the generation of new immunophenotypic data in the same mice as in ongoing studies, de novo collection of human HSPC data, and the application of novel statistical methodology that overcome limitations of current analytical approaches. The results of these efforts could have a significant impact on our understanding of GxE effects in asthma and reveal underlying biological mechanisms involving HSPC biology that may have important biological, epidemiological, and translational implications for respiratory diseases. Taken together, the proposed studies expand and complement the scope of current projects in an efficient manner and will generate a synergistic research program among a team of investigators with the requisite expertise to successfully achieve the goals of the proposed studies.

Public Health Relevance

The effects of traffic-related air pollution on the physiology of hematopoietic stem/progenitor cells (HSPCs) in relation to asthma are not well known. The purpose of this ViCTER Program is to use innovative and complementary approaches in mice and humans to investigate the interactions between asthma, HSPC homeostasis, genetic factors, and traffic-related air pollution. The results of these integrative studies could have important biological, epidemiological, and translational implications for respiratory diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
3R01ES021801-03S1
Application #
8626197
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Mcallister, Kimberly A
Project Start
2012-08-01
Project End
2017-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Southern California
Department
Public Health & Prev Medicine
Type
Schools of Medicine
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Kang, Eun Yong; Lee, Cue Hyunkyu; Furlotte, Nicholas A et al. (2018) An Association Mapping Framework To Account for Potential Sex Difference in Genetic Architectures. Genetics 209:685-698
Chen, Yan; Millstein, Joshua; Liu, Yao et al. (2018) Single-Cell Digital Lysates Generated by Phase-Switch Microfluidic Device Reveal Transcriptome Perturbation of Cell Cycle. ACS Nano 12:4687-4694
Zhou, Hui; Li, Xia Iona; Kim, Jeong Hee et al. (2018) Effect of inhaled allergens and air pollutants on childhood rhinitis development. Ann Allergy Asthma Immunol 120:212-214
Olde Loohuis, Loes M; Mangul, Serghei; Ori, Anil P S et al. (2018) Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia. Transl Psychiatry 8:96
Li, Shengwen Calvin; Stucky, Andres; Chen, Xuelian et al. (2018) Single-cell transcriptomes reveal the mechanism for a breast cancer prognostic gene panel. Oncotarget 9:33290-33301
Alderete, T L; Song, A Y; Bastain, T et al. (2018) Prenatal traffic-related air pollution exposures, cord blood adipokines and infant weight. Pediatr Obes 13:348-356
Kothari, Parul H; Qiu, Weiliang; Croteau-Chonka, Damien C et al. (2018) Role of local CpG DNA methylation in mediating the 17q21 asthma susceptibility gasdermin B (GSDMB)/ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) expression quantitative trait locus. J Allergy Clin Immunol 141:2282-2286.e6
Mangul, Serghei; Yang, Harry Taegyun; Strauli, Nicolas et al. (2018) ROP: dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues. Genome Biol 19:36
Rahmani, Elior; Schweiger, Regev; Shenhav, Liat et al. (2018) BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference. Genome Biol 19:141
Hormozdiari, Farhad; Zhu, Anthony; Kichaev, Gleb et al. (2017) Widespread Allelic Heterogeneity in Complex Traits. Am J Hum Genet 100:789-802

Showing the most recent 10 out of 45 publications