Rhodopsin, the primary protein constituent of the human retina, has a direct role in human diseases through a variety of point defects in the rhodopsin gene that result in autosomal dominant retinitis pigmentosa (ADRP). ADRP is a form of retinal degeneration, affecting over 100,000 Americans, which can lead to blindness. However, beyond its unfortunate role in human disease, research suggests that rhodopsin offers a powerful tool in the quest for better health. That potential comes from the fact that rhodopsin belongs to a broad class of hepatahelical G protein-coupled receptors (GPCRs) estimated to be the target of about 50% of existing medicines. Early events in the operation of those important receptors, comprising ~5% of the human genome, are a mystery because the non-rhodopsin receptors cannot be synchronously triggered. Rhodopsin offers a way to understand those processes because its natural trigger, light, can be delivered on a sub- nanosecond time scale with modern laser technology. Further, the light absorbing function of rhodopsin allows activation processes to be studied with fast modern optical methods. Understanding the complex early processes in GPCRs should contribute to development of better medications. We propose time-resolved studies of rhodopsin and related visual pigments to characterize the mechanism of GPCR activation with particular emphasis on the integral role of the membrane environment and effects of protein-protein interactions. Time-resolved UV/visible absorbance changes during activation will be measured using an intensified charge coupled device, optical array detector using a flash lamp probe source whose brightness is sufficient for high signal-to-noise ratio sub-microsecond measurements. Data will be analyzed using Matlab routines that allow different mechanistic schemes connecting photointermediates to be compared. The effects of membrane environment on the GPCR activation mechanism will be studied using both liposomes to vary the lipid environment and nanodiscs to preserve membrane-like activation for rhodopsin mutants in a preparation with superior optical properties for measurement. Time-resolved measurements with polarized light, including linear dichroism (LD) and circular dichroism (CD) will be used to obtain more detailed structural information about the activation mechanism. LD will be used to determine transition dipole moment changes during photointermediate progression and to determine whether rhodopsin is a monomer or higher order oligomer in the native disk membrane. Studies of rhodopsin mutants include those in extracellular loop 2, near the chromophore, rhodopsin stabilized by an engineered disulfide linkage and ADRP mutants whose pathology remain unexplained.

Public Health Relevance

Rhodopsin, the primary protein constituent of the human retina, has a direct role in human diseases through a variety of point defects in the rhodopsin gene that result in autosomal dominant retinitis pigmentosa (ADRP). ADRP is a form of retinal degeneration, affecting over 100,000 Americans, which can lead to blindness. Study of rhodopsin activation is directed at understanding ADRP and related diseases outside the eye in rhodopsin's much larger family of G protein coupled receptors.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
2R01EY000983-38A1
Application #
8438233
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Neuhold, Lisa
Project Start
1977-04-01
Project End
2016-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
38
Fiscal Year
2013
Total Cost
$380,625
Indirect Cost
$130,625
Name
University of California Santa Cruz
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
125084723
City
Santa Cruz
State
CA
Country
United States
Zip Code
95064
Mooney, Victoria L; Szundi, Istvan; Lewis, James W et al. (2012) Schiff base protonation changes in Siberian hamster ultraviolet cone pigment photointermediates. Biochemistry 51:2630-7
Tsukamoto, Hisao; Szundi, Istvan; Lewis, James W et al. (2011) Rhodopsin in nanodiscs has native membrane-like photointermediates. Biochemistry 50:5086-91
Chen, Eefei; Goldbeck, Robert A; Kliger, David S (2010) Nanosecond time-resolved polarization spectroscopies: tools for probing protein reaction mechanisms. Methods 52:3-11
Szundi, Istvan; Epps, Jacqueline; Lewis, James W et al. (2010) Temperature dependence of the lumirhodopsin I-lumirhodopsin II equilibrium. Biochemistry 49:5852-8
Thomas, Yiren Gu; Szundi, Istvan; Lewis, James W et al. (2009) Microsecond time-resolved circular dichroism of rhodopsin photointermediates. Biochemistry 48:12283-9
Epps, Jacqueline; Lewis, James W; Szundi, Istvan et al. (2006) Lumi I --> Lumi II: the last detergent independent process in rhodopsin photoexcitationt. Photochem Photobiol 82:1436-41
Lewis, James W; Szundi, Istvan; Kazmi, Manija A et al. (2006) Proton movement and photointermediate kinetics in rhodopsin mutants. Biochemistry 45:5430-9
Szundi, Istvan; Ruprecht, Jonathan J; Epps, Jacqueline et al. (2006) Rhodopsin photointermediates in two-dimensional crystals at physiological temperatures. Biochemistry 45:4974-82
Szundi, Istvan; Lewis, James W; Kliger, David S (2005) Effect of digitonin on the rhodopsin meta I-meta II equilibrium. Photochem Photobiol 81:866-73
Lewis, James W; Szundi, Istvan; Kazmi, Manija A et al. (2004) Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants. Biochemistry 43:12614-21

Showing the most recent 10 out of 51 publications