Visual pigment regeneration is an absolute requirement for maintenance of visual sensitivity in the mammalian retina. However, the relationship between pigment regeneration and the recovery of sensitivity following exposure to bright light (dark adaptation) is presently poorly understood. The elucidation of these fundamental mechanisms is of great importance, as the impairment of pigment regeneration and the resulting slowing of dark-adaptation in photoreceptor cells are hallmarks of a number of blinding eye diseases, including Oguchi's disease, Stargardt's disease, Leber's congential amaurosis, fundus albipunctatis, and age-related maculopathy. The overall aims are to determine the cellular mechanism(s) within rod photoreceptors isolated from the retinal pigment epithelium that regulate the rate of pigment regeneration and dark adaptation in mammalian rods, processes that are substantially slower than in mammalian cones. Recovery of sensitivity will be measured electrophysiologically, the reduction of all-trans retinal to all-trans retinol following pigment bleaching will be measured microfluorometrically, the rate of pigment regeneration will be measured microspectrophotometrically. This multidisciplinary approach will be applied to wild-type (WT) and transgenic mouse rods before and following pigment bleaching, and after exogenous treatment with 11-cis retinal to regenerate visual pigment.
Two Aims are proposed:
In Aim I we will determine the cellular mechanisms that regulate the rate of visual pigment regeneration in rod photoreceptors isolated from the retinal pigment epithelium following their exposure to bright light. We will test the hypotheses that the decay of long-lived photoproducts of bleaching (Meta III) limits the rate of pigment regeneration, that during regeneration 11-cis retinal partitions into intracellular disks of bleached rods from lipid binding partners in the extracellular space surrounding rods by a passive diffusion, and that the residence of opsin in intracellular disks in rods slows pigment regeneration rate compared to cones in which opsin is located in the plasma membrane.
In Aim II we will determine and characterize the time course of mechanisms by which regenerated visual pigment leads to recovery of visual sensitivity in rod photoreceptors Together with our collaborator, Dr. Jeannie Chen,we will test the hypotheses that recovery of sensitivity in bleached and regenerated mouse rods occurs in temporally and mechanistically distinct stages that are associated with dephosphorylation of C-terminal residues on regenerated rhodopsin and/or transducin translocation. The knowledge we will gain is prerequisite for understanding dark adaptation under normal and disease-related conditions, and is required for development of novel therapies to treat blinding eye conditions.

Public Health Relevance

Visual pigment regeneration is an absolute requirement for maintenance of sensitivity in the mammalian retina, but the relationship between pigment regeneration and sensitivity recovery is poorly understood. An understanding of their relationship is critically important, as impaired visual pigment regeneration and the resulting slowing of dark adaptation is the basis of a number of blinding eye diseases. The experiments in this proposal are designed to elucidate the cellular basis and relationship of these processes in wild-type and transgenic mice with a long term goal to understand photoreceptor function under normal and disease-related conditions.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY001157-41
Application #
8656104
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Neuhold, Lisa
Project Start
1977-04-01
Project End
2016-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
41
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Boston University
Department
Physiology
Type
Schools of Medicine
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02118
Sato, Shinya; Frederiksen, Rikard; Cornwall, M Carter et al. (2017) The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones. Vis Neurosci 34:E004
Yue, Wendy Wing Sze; Frederiksen, Rikard; Ren, Xiaozhi et al. (2017) Spontaneous activation of visual pigments in relation to openness/closedness of chromophore-binding pocket. Elife 6:
Frederiksen, Rikard; Nymark, Soile; Kolesnikov, Alexander V et al. (2016) Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods. J Gen Physiol 148:1-11
Berry, Justin; Frederiksen, Rikard; Yao, Yun et al. (2016) Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods. J Neurosci 36:6973-87
Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard et al. (2016) Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds. Elife 5:
Wilby, David; Toomey, Matthew B; Olsson, Peter et al. (2015) Optics of cone photoreceptors in the chicken (Gallus gallus domesticus). J R Soc Interface 12:20150591
Toomey, Matthew B; Collins, Aaron M; Frederiksen, Rikard et al. (2015) A complex carotenoid palette tunes avian colour vision. J R Soc Interface 12:20150563
Wang, Jin-shan; Nymark, Soile; Frederiksen, Rikard et al. (2014) Chromophore supply rate-limits mammalian photoreceptor dark adaptation. J Neurosci 34:11212-21
Frederiksen, Rikard; Boyer, Nicholas P; Nickle, Benjamin et al. (2012) Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. J Gen Physiol 139:493-505
Nymark, S; Frederiksen, R; Woodruff, M L et al. (2012) Bleaching of mouse rods: microspectrophotometry and suction-electrode recording. J Physiol 590:2353-64

Showing the most recent 10 out of 51 publications