Glaucoma is the second leading cause of blindness in the world, but, with proper treatment, blindness can be avoided in the overwhelming majority of individuals. Our long-term goal is to improve the detection of early glaucomatous damage, as well as the detection of progression of such damage. We focus in large part on damage to the macula, the most important retinal region for everyday visual activities. The lack of knowledge about the nature and prevalence of glaucomatous damage of the macula is a major barrier to progress in this field.
In Aim 1 a,c, we test hypotheses about the nature of macular damage using a combination of visual field perimetry, optical coherence tomography (OCT), and a cutting-edge imaging technique, adaptive optics scanning laser ophthalmoscopy (AO-SLO). In both Aims 1b and 2a, we use AO-SLO to directly view the retinal nerve fiber (RNF) bundles so as to better understand glaucomatous damage and its progression at the level of individual RNF bundles. A second barrier to progress in the field is the sub-optimal clinical use of OCT. We attack this barrier in 4 ways. First, as part of Aim 1b, we compare AO-SLO images to OCT scans so as to improve the clinical utility of both spectral-domain (sd) and swept-source (ss) OCT, the widely available noninvasive, clinical techniques for assessing the integrity of the RNF layer. Our working hypothesis is that OCT scans contain information about local RNF bundle damage and that this information is currently going undetected. Second, in Aim 3c, we test the hypothesis that this damage can be better visualized with an en-face analysis of OCT scans than with the commonly used RNF layer thickness analyses. Third, in Aim 2b, we test the hypothesis that we can improve the detection of glaucomatous progression by focusing on local regions of damage, as seen on OCT scans of the optic disc. Finally, in Aim 3a, we test the hypothesis that the detection of glaucomatous damage can be improved if: 1. the OCT scans are carefully examined for local defects and algorithm failures; and 2. local thinning of both RNF and retinal ganglion cell layers, as seen with OCT cube scans, are topographically compared to local loss of visual field sensitivity, as seen with standard automated perimetry.
In aim 3 b, we compare this approach, which can be summarized in a single page, to other methods, including current clinical methods that use commercial reports and summary statistics.

Public Health Relevance

Glaucoma is the second leading cause of blindness in the world, but, with proper treatment, blindness can be avoided in the overwhelming majority of individuals. We seek to improve the detection of early glaucomatous damage, as well as the detection of progression of such damage. We focus on the most important region of the eye for everyday functions, the macula, and on improving the use of a commonly available clinical tool, optical coherence tomography, in detecting damage to this region.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
2R01EY002115-39
Application #
9014108
Study Section
Diseases and Pathophysiology of the Visual System Study Section (DPVS)
Program Officer
Liberman, Ellen S
Project Start
1977-08-01
Project End
2019-02-28
Budget Start
2016-03-01
Budget End
2017-02-28
Support Year
39
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Psychology
Type
Graduate Schools
DUNS #
049179401
City
New York
State
NY
Country
United States
Zip Code
10027
Hood, Donald C; De Moraes, Carlos Gustavo (2018) Challenges to the Common Clinical Paradigm for Diagnosis of Glaucomatous Damage With OCT and Visual Fields. Invest Ophthalmol Vis Sci 59:788-791
Wu, Zhichao; Weng, Denis S D; Rajshekhar, Rashmi et al. (2018) Effectiveness of a Qualitative Approach Toward Evaluating OCT Imaging for Detecting Glaucomatous Damage. Transl Vis Sci Technol 7:7
De Moraes, Carlos Gustavo; Muhammad, Hassan; Kaur, Khushmit et al. (2018) Interindividual Variations in Foveal Anatomy and Artifacts Seen on Inner Retinal Probability Maps from Spectral Domain OCT Scans of the Macula. Transl Vis Sci Technol 7:4
Mavrommatis, Maria A; Wu, Zhichao; Naegele, Saskia I et al. (2018) Deep Defects Seen on Visual Fields Spatially Correspond Well to Loss of Retinal Nerve Fiber Layer Seen on Circumpapillary OCT Scans. Invest Ophthalmol Vis Sci 59:621-628
Hood, Donald C; De Moraes, Carlos G (2018) Four Questions for Every Clinician Diagnosing and Monitoring Glaucoma. J Glaucoma 27:657-664
Wu, Zhichao; Weng, Denis S D; Thenappan, Abinaya et al. (2018) Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography. Transl Vis Sci Technol 7:11
Muhammad, Hassan; Fuchs, Thomas J; De Cuir, Nicole et al. (2017) Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects. J Glaucoma 26:1086-1094
Prager, Alisa J; Hood, Donald C; Liebmann, Jeffrey M et al. (2017) Association of Glaucoma-Related, Optical Coherence Tomography-Measured Macular Damage With Vision-Related Quality of Life. JAMA Ophthalmol 135:783-788
Thenappan, Abinaya; De Moraes, Carlos Gustavo; Wang, Diane L et al. (2017) Optical Coherence Tomography and Glaucoma Progression: A Comparison of a Region of Interest Approach to Average Retinal Nerve Fiber Layer Thickness. J Glaucoma 26:473-477
Hood, Donald C (2017) Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Prog Retin Eye Res 57:46-75

Showing the most recent 10 out of 162 publications