Nitric oxide (NO), carbon monoxide (CO) and cGMP signal transduction systems function in large numbers of retinal neurons. Many biochemical pathways modulate NO and cGMP in normal retinal function and NO is involved in many ocular pathologies. This proposal will test three hypotheses: (1) that specific components of the NO, CO and cGMP signal transduction pathways are found in particular retinal neurons, which will be tested using immunocytochemistry and biochemistry to examine the location and function of particular components of these transduction pathways such as cGMP, guanylate cyclase, phosphodiesterases, heme oxygenases, nitric oxide synthases etc. in specific retinal cells; (2) that ganglion cells of efferents to the retina release NO and use NO as a retrograde transmitter to modulate levels of cGMP in retinal neurons, which will be tested by electrically activating ganglion cells or retinal efferents, followed by cGMP immunocytochemistry and ELISA to monitor changes in cGMP in retinal neurons as well as direct imaging of NO or citrulline immunocytochemistry to localize NO production; and (3) that NO, CO or cGMP can influence several synaptic mechanisms including transmitter release. This will be tested by examining the relationship of NO or cGMP to cGMP-gated channels and protein kinase G, or to the modulation of neurotransmitter release or cellular calcium levels. The investigation of select components of the NO-, CO- or cGMP-related signal transduction pathways in specific retinal cells will provide valuable new knowledge about the function of NO, CO and cGMP in the retina and it will provide a firm anatomical physiological basis for more detailed biochemical, physiological and molecular studies of the function of these signal transduction pathways. Many studies have implicated NO in such diverse ocular pathologies as retinitis, glaucoma, ischemia or excitotoxicity. Increased understanding of the NO-, CO- and cGMP-signaling pathways in both normal and pathological conditions is critical to the development of more selective and effective prophylactic and therapeutic strategies for the treatment of NO-related retinal ocular pathologies.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY004785-18
Application #
6384461
Study Section
Visual Sciences C Study Section (VISC)
Program Officer
Mariani, Andrew P
Project Start
1982-08-01
Project End
2003-06-30
Budget Start
2001-07-01
Budget End
2003-06-30
Support Year
18
Fiscal Year
2001
Total Cost
$329,198
Indirect Cost
Name
Boston University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
042250712
City
Boston
State
MA
Country
United States
Zip Code
02215
Blom, Jan; Giove, Tom; Deshpande, Monika et al. (2012) Characterization of nitric oxide signaling pathways in the mouse retina. J Comp Neurol 520:4204-17
Blom, Jan; Giove, Thomas J; Pong, Winnie W et al. (2012) Evidence for a functional adrenomedullin signaling pathway in the mouse retina. Mol Vis 18:1339-53
Giove, Thomas J; Sena-Esteves, Miguel; Eldred, William D (2010) Transduction of the inner mouse retina using AAVrh8 and AAVrh10 via intravitreal injection. Exp Eye Res 91:652-9
Giove, Thomas J; Deshpande, Monika M; Eldred, William D (2009) Identification of alternate transcripts of neuronal nitric oxide synthase in the mouse retina. J Neurosci Res 87:3134-42
Blom, Jan J; Blute, Todd A; Eldred, William D (2009) Functional localization of the nitric oxide/cGMP pathway in the salamander retina. Vis Neurosci 26:275-86
Giove, Thomas J; Deshpande, Monika M; Gagen, Christine S et al. (2009) Increased neuronal nitric oxide synthase activity in retinal neurons in early diabetic retinopathy. Mol Vis 15:2249-58
Pong, Winnie W; Eldred, William D (2009) Interactions of the gaseous neuromodulators nitric oxide, carbon monoxide, and hydrogen sulfide in the salamander retina. J Neurosci Res 87:2356-64
Xie, Z; Adamowicz, W O; Eldred, W D et al. (2006) Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience 139:597-607
Yu, Dou; Eldred, William D (2005) Nitric oxide stimulates gamma-aminobutyric acid release and inhibits glycine release in retina. J Comp Neurol 483:278-91
Eldred, William D; Blute, Todd A (2005) Imaging of nitric oxide in the retina. Vision Res 45:3469-86

Showing the most recent 10 out of 11 publications