Epidermal growth factor, EGF, plays an essential role in corneal epithelial renewal. It is needed for proper corneal epithelial healing following wounding of this layer, which is required for normal vision. Our long-term goal is to further understand how EGF receptor-linked signaling elicits its effects on corneal epithelial homeostasis. We have found that initiation by EGF of cell cycle progression is dependent on the stimulation of ion transporters activity; EGF stimulates Na:K:2Cl cotransporter 1 (NKCC1) activity, and subsequently stimulates K+ and Cl- conductance activity, which results in a transient increase in cell volume. On the other hand, cell cycle progression is known to be associated with increases in cell volume. Therefore, we now hypothesize that in rabbit corneal epithelial cells (RCEC), EGF-induced changes in NKCC1 activity and expression is a requisite for cell cycle progression from early G1 to mitosis. We further hypothesize that modulation of activity of all ion transporters and channels involved in cell volume regulation is needed for cell proliferation and migration. Our three aims entail: 1) determining during cell cycle progression whether there is differential activity and expression of ion transporters (NKCC1, Na/K-ATPase, K+ and Cl- conductances) underlying cell volume regulation; 2) determining the interactions between the cell signaling pathways mediating EGF receptor control of the aforementioned ion transporters; 3) dissecting how EGF controls cell proliferation and migration. Cell volume and regulatory volume behavior will be characterized with video, confocal microscopy and low angle light scattering, respectively. NKCC1 gene transcription will be characterized with a reporter gene assay. NKCC1 activity will be evaluated based on measurements of 86Rb+ influx. EGF-induced activation of mitogen activated protein kinase (MAPK) signaling and crosstalk will be determined with kinase assays. Interactions of specific MAPK components with NKCC1 will be evaluated using coimmunoprecipitation. EGF mediated signaling control of epithelial proliferation and migration will be investigated using kinase inhibitors and stable MAPK gene (constitutively active and tetracycline-inducible dominant negative) expression. Rates of epithelial proliferation and migration will be characterized in an in vitro wound healing model system. These studies could provide new strategies for hastening corneal epithelial wound healing and reducing severity of losses in vision. In addition, they may provide insights on how to stimulate healing bypassing growth factor receptor control.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY004795-23
Application #
7176094
Study Section
Special Emphasis Panel (ZRG1-VISA (01))
Program Officer
Shen, Grace L
Project Start
1989-07-01
Project End
2008-11-30
Budget Start
2006-12-01
Budget End
2007-11-30
Support Year
23
Fiscal Year
2007
Total Cost
$371,906
Indirect Cost
Name
State College of Optometry
Department
Biology
Type
Schools of Optometry/Ophthalmol
DUNS #
152652764
City
New York
State
NY
Country
United States
Zip Code
10036
Yang, Yuanquan; Yang, Hua; Wang, Zheng et al. (2013) Wakayama symposium: dependence of corneal epithelial homeostasis on transient receptor potential function. Ocul Surf 11:8-11
Yang, Yuanquan; Wang, Zheng; Yang, Hua et al. (2013) TRPV1 potentiates TGF?-induction of corneal myofibroblast development through an oxidative stress-mediated p38-SMAD2 signaling loop. PLoS One 8:e77300
Yang, Y; Yang, H; Wang, Z et al. (2013) Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury. Cell Signal 25:501-11
Yang, Yuanquan; Yang, Hua; Wang, Zheng et al. (2013) Functional TRPV1 expression in human corneal fibroblasts. Exp Eye Res 107:121-9
Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika et al. (2012) Calcium regulation by thermo- and osmosensing transient receptor potential vanilloid channels (TRPVs) in human conjunctival epithelial cells. Histochem Cell Biol 137:743-61
Pan, Zan; Wang, Zheng; Yang, Hua et al. (2011) TRPV1 activation is required for hypertonicity-stimulated inflammatory cytokine release in human corneal epithelial cells. Invest Ophthalmol Vis Sci 52:485-93
Mergler, Stefan; Garreis, Fabian; Sahlmuller, Monika et al. (2011) Thermosensitive transient receptor potential channels in human corneal epithelial cells. J Cell Physiol 226:1828-42
Wang, Zheng; Bildin, Victor N; Yang, Hua et al. (2011) Dependence of corneal epithelial cell proliferation on modulation of interactions between ERK1/2 and NKCC1. Cell Physiol Biochem 28:703-14
Mergler, Stefan; Valtink, Monika; Taetz, Katrin et al. (2011) Characterization of transient receptor potential vanilloid channel 4 (TRPV4) in human corneal endothelial cells. Exp Eye Res 93:710-9
Wang, Z; Yang, Y; Yang, H et al. (2011) NF-?B feedback control of JNK1 activation modulates TRPV1-induced increases in IL-6 and IL-8 release by human corneal epithelial cells. Mol Vis 17:3137-46

Showing the most recent 10 out of 73 publications