Circadian clocks generate daily biological rhythms that provide adaptive advantage to organisms by allowing them to anticipate and prepare for regular daily changes in their environment. Circadian disruption has been associated with numerous immune, inflammatory, and metabolic disorders, including diabetic retinopathy. The retina contains multiple circadian clocks located in a variety of retinal cell types, including amacrine, ganglion, photoreceptor, and retinal pigment epithelial (RPE) cells, that modulate visual processing and generate a circadian rhythm of protection from photo-oxidative stress. Circadian clocks are transcriptional-translational feedback loops of conserved clock genes and proteins that generate ~24h rhythms. CLOCK and NPAS2 have overlapping roles in the feedback loops and both regulate circadian gene transcription. The relative contributions of CLOCK and NPAS2 to retinal circadian oscillators have not been explored. In addition, the mechanisms whereby diverse retinal clocks are entrained to the light-dark cycle and are synchronized to regulate retinal function are still unclear. Dopamine (DA) is a circadian neuromodulator that optimizes retinal physiology for bright light, high-resolution vision during the daytime. We hypothesize that DA synchronizes circadian clocks expressing NPAS2 and CLOCK in distinct retinal cell types to modulate visual processing and rhythmic protection from photo-oxidative stress. Using established genetic models and novel mouse models in which DA and/or specific clock genes are depleted selectively from the retina by conditional gene disruption, we will examine circadian rhythms of visual function, sensitivity to photo-oxidative stress, and gene expression to provide a more clear understanding of the organization retinal circadian clock networks. Research proposed in this application is designed to test the following three predictions of our hypotheses: (1) DA modulates circadian rhythms of contrast sensitivity via dopamine D4 receptor (D4R)-mediated regulation of cAMP signaling and circadian oscillators that drive rhythms with both CLOCK/BMAL1 and NPAS2/BMAL1 complexes. (2) Circadian rhythms of photopic ERG amplitudes are modulated by DA effects on photoreceptors via D4Rs, cAMP, and oscillators that utilize CLOCK but not NPAS2. (3) DA protects photoreceptors against photo-oxidative stress via D4Rs on photoreceptors and via dopamine D5 receptors (D5Rs) and dopamine D2-like receptors on RPE cells by modulating a CLOCK-dependent circadian rhythm of susceptibility to light damage. These innovative studies will elucidate mechanisms of retinal circadian physiology that control high-resolution vision and sensitivity to photo-oxidative stress. They will provide novel insights into ways to improve visual function at night (e.g., shift workers, pilots) and to prevent or treat retinal degenerative diseases.

Public Health Relevance

Modern society exposes us to light at night, which disrupts our bodies'circadian rhythms and may predispose us to blinding retinal disorders. This research investigates how retinal neuromodulators regulate natural circadian rhythms to provide high-resolution vision and protection from environmental or endogenous stressors that may contribute blinding diseases such as age-related macular degeneration (AMD). This study will increase our understanding of the risks to our visual health of circadian disruption and may lead to development of novel therapeutic approaches for AMD and other retinal degenerative diseases.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
2R01EY004864-30A1
Application #
8578402
Study Section
Special Emphasis Panel (BVS)
Program Officer
Greenwell, Thomas
Project Start
1983-07-01
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
30
Fiscal Year
2013
Total Cost
$390,000
Indirect Cost
$140,000
Name
Emory University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Aung, Moe H; Park, Han Na; Han, Moon K et al. (2014) Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes. J Neurosci 34:726-36
Park, Han na; Jabbar, Seema B; Tan, Christopher C et al. (2014) Visually-driven ocular growth in mice requires functional rod photoreceptors. Invest Ophthalmol Vis Sci 55:6272-9
Yamazaki, Fumiyoshi; Kim, Hyun Hee; Lau, Pierre et al. (2014) pY RNA1-s2: a highly retina-enriched small RNA that selectively binds to Matrin 3 (Matr3). PLoS One 9:e88217
McMahon, Douglas G; Iuvone, P Michael; Tosini, Gianluca (2014) Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Prog Retin Eye Res 39:58-76
Chakraborty, Ranjay; Park, Han na; Aung, Moe H et al. (2014) Comparison of refractive development and retinal dopamine in OFF pathway mutant and C57BL/6J wild-type mice. Mol Vis 20:1318-27
Iuvone, P Michael; Boatright, Jeffrey H; Tosini, Gianluca et al. (2014) N-acetylserotonin: circadian activation of the BDNF receptor and neuroprotection in the retina and brain. Adv Exp Med Biol 801:765-71
Barathi, Veluchamy A; Chaurasia, Shyam S; Poidinger, Michael et al. (2014) Involvement of GABA transporters in atropine-treated myopic retina as revealed by iTRAQ quantitative proteomics. J Proteome Res 13:4647-58
Park, Hanna; Tan, Christopher C; Faulkner, Amanda et al. (2013) Retinal degeneration increases susceptibility to myopia in mice. Mol Vis 19:2068-79
Stone, Richard A; Pardue, Machelle T; Iuvone, P Michael et al. (2013) Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. Exp Eye Res 114:35-47
Howell, Jennifer C; Chun, Eugene; Farrell, Annie N et al. (2013) Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis 19:544-60

Showing the most recent 10 out of 110 publications