A decrease in secretion or an alteration in the composition of lacrimal gland fluid is a primary cause of the ocular surface problems that occur in aqueous tear-deficient dry eye resulting from lacrimal gland disease, contact lens wear, LASIK surgery, and aging. Parasympathetic and sympathetic nerves are well-known stimuli of lacrimal gland secretion and the signaling pathways activated by these stimuli have been characterized. A new type of stimulus of lacrimal gland secretion, epidermal growth factor (EGF), has been identified. Based on this finding, the following working model has been proposed for the present grant: Activation of sensory nerves from the ocular surface stimulates parasymapthetic and sympathetic nerves that innervate the lacrimal gland to release their neurotransmitters. These neurotransmitters activate specific signaling pathways to stimulate the synthesis of EGF and cause its release by ectodomain shedding from the basolateral membranes. The released EGF interacts with EGF (erbB) receptors on the lacrimal gland acinar cells activating a signaling pathway that causes secretion of proteins including the shedding of EGF family members from the apical membranes. These growth factors are released into lacrimal gland fluid to protect the ocular surface. The long term goal of the experiments described in this proposal is to test this model. From the results of the proposed study, new treatments for dry eye, based on stimulating EGF-, cholinergic, and alpha1-adrenergic-dependent signaling pathways to induce secretion, could be developed. To reach this goal the following specific aims have been proposed: 1) Which EGF receptor subtypes participate in stimulation of lacrimal gland secretion?; 2) Which cellular signaling pathways does EGF activate to stimulate lacrimal gland protein secretion?; and 3) How are the expression and release of EGF, transforming growth factor (TGF) alpha, and other EGF family members regulated? Acini will be prepared from rat lacrimal glands. Immunoprecipitation, Western blot analysis, immunofluorescence microscopy, and EGF receptor deficient mice will be used to determine if EGF activates and alpha1-adrenergic agonists transactivate EGF receptors to stimulate secretion. Biochemical assays, inhibitors, and adenovirus transduction will be used to determine the cellular signaling pathways activated by EGF compared to cholinergic and alpha1-adrenergic agonists. lmmunofluorescence microscopy, Western and Northern blot analysis, and RT-PCR will be used to determine how the expression and release of EGF and its family members is regulated.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY006177-18
Application #
6518354
Study Section
Visual Sciences A Study Section (VISA)
Program Officer
Fisher, Richard S
Project Start
1985-06-01
Project End
2006-05-31
Budget Start
2002-06-01
Budget End
2003-05-31
Support Year
18
Fiscal Year
2002
Total Cost
$435,000
Indirect Cost
Name
Schepens Eye Research Institute
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02114
Bhattacharya, Sumit; García-Posadas, Laura; Hodges, Robin R et al. (2018) Alteration in nerves and neurotransmitter stimulation of lacrimal gland secretion in the TSP-1-/- mouse model of aqueous deficiency dry eye. Mucosal Immunol 11:1138-1148
Shi, Ting; Papay, Robert S; Perez, Dianne M (2017) The role of ?1-adrenergic receptors in regulating metabolism: increased glucose tolerance, leptin secretion and lipid oxidation. J Recept Signal Transduct Res 37:124-132
Hodges, Robin R; Dartt, Darlene A (2016) Signaling Pathways of Purinergic Receptors and Their Interactions with Cholinergic and Adrenergic Pathways in the Lacrimal Gland. J Ocul Pharmacol Ther 32:490-497
Shatos, Marie A; Hodges, Robin R; Morinaga, Masahiro et al. (2016) Alteration in cellular turnover and progenitor cell population in lacrimal glands from thrombospondin 1-/- mice, a model of dry eye. Exp Eye Res 153:27-41
Contreras-Ruiz, Laura; Ryan, Denise S; Sia, Rose K et al. (2014) Polymorphism in THBS1 gene is associated with post-refractive surgery chronic ocular surface inflammation. Ophthalmology 121:1389-97
Sanderson, Julie; Dartt, Darlene A; Trinkaus-Randall, Vickery et al. (2014) Purines in the eye: recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, Müller cells, lens, trabecular meshwork, cornea and lacrimal gland. Exp Eye Res 127:270-9
Dartt, D A; Willcox, M D P (2013) Complexity of the tear film: importance in homeostasis and dysfunction during disease. Exp Eye Res 117:1-3
Shatos, Marie A; Haugaard-Kedstrom, Linda; Hodges, Robin R et al. (2012) Isolation and characterization of progenitor cells in uninjured, adult rat lacrimal gland. Invest Ophthalmol Vis Sci 53:2749-59
Hodges, Robin R; Guilbert, Erin; Shatos, Marie A et al. (2011) Phospholipase D1, but not D2, regulates protein secretion via Rho/ROCK in a Ras/Raf-independent, MEK-dependent manner in rat lacrimal gland. Invest Ophthalmol Vis Sci 52:2199-210
Hodges, Robin R; Vrouvlianis, Joanna; Scott, Rachel et al. (2011) Identification of P2X? and P2X? purinergic receptors activated by ATP in rat lacrimal gland. Invest Ophthalmol Vis Sci 52:3254-63

Showing the most recent 10 out of 24 publications