The long-term objective of this project is to understand how age-related changes in the lens proteins contribute to cataract. The proposed research will examine the composition and structure of light scattering protein aggregates and water-insoluble protein that form in aged human lenses using mass spectrometry.
The specific aims of the project are to: 1) quantify the protein composition of protein aggregates and water-insoluble protein in normal and cataractous human lenses;2) identify sites in aggregated and water-insoluble lens proteins that form intermolecular disulfide cross-links during aging, and 3) map the contact sites occurring in aggregated and water-insoluble lens proteins using chemical cross-linkers. The results will provide new information about the structure of light scattering proteins in human lens so that the mechanism of age-related protein aggregation and insolubilization can be eventually deduced. This information may lead to therapeutic strategies to slow the rate of age-related cataract formation by inhibiting protein aggregation. The research is important to human health, because cataracts are a major human disease for which there is no useful treatment other than surgical extraction of the lens.

Public Health Relevance

Age-related cataracts are a major health problem caused by aggregation and light scatter of lens proteins. This study will use mass spectrometry to analyze the composition and structure of protein aggregates in human lens. The results may suggest therapies to slow cataract formation by inhibiting protein aggregation in the aged lens.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Araj, Houmam H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Schools of Medicine
United States
Zip Code
Krey, J F; Wilmarth, P A; David, L L et al. (2017) Analysis of the Proteome of Hair-Cell Stereocilia by Mass Spectrometry. Methods Enzymol 585:329-354
Lampi, Kirsten J; Murray, Matthew R; Peterson, Matthew P et al. (2016) Differences in solution dynamics between lens ?-crystallin homodimers and heterodimers probed by hydrogen-deuterium exchange and deamidation. Biochim Biophys Acta 1860:304-14
Chen, Yingwei; Sagar, Vatsala; Len, Hoay-Shuen et al. (2016) ?-Crystallins of the chicken lens: remnants of an ancient vertebrate gene family in birds. FEBS J 283:1516-30
Wilmarth, Phillip A; Krey, Jocelyn F; Shin, Jung-Bum et al. (2015) Hair-bundle proteomes of avian and mammalian inner-ear utricles. Sci Data 2:150074
Elferich, Johannes; Williamson, Danielle M; David, Larry L et al. (2015) Determination of Histidine pKa Values in the Propeptides of Furin and Proprotein Convertase 1/3 Using Histidine Hydrogen-Deuterium Exchange Mass Spectrometry. Anal Chem 87:7909-17
Krey, Jocelyn F; Wilmarth, Phillip A; Shin, Jung-Bum et al. (2014) Accurate label-free protein quantitation with high- and low-resolution mass spectrometers. J Proteome Res 13:1034-1044
Lampi, Kirsten J; Wilmarth, Phillip A; Murray, Matthew R et al. (2014) Lens ?-crystallins: the role of deamidation and related modifications in aging and cataract. Prog Biophys Mol Biol 115:21-31
Avenarius, Matthew R; Saylor, Katherine W; Lundeberg, Megan R et al. (2014) Correlation of actin crosslinker and capper expression levels with stereocilia growth phases. Mol Cell Proteomics 13:606-20
Shang, Fu; Wilmarth, Phillip A; Chang, Min-lee et al. (2014) Newborn mouse lens proteome and its alteration by lysine 6 mutant ubiquitin. J Proteome Res 13:1177-89
Grey, Angus C; Walker, Kerry L; Petrova, Rosica S et al. (2013) Verification and spatial localization of aquaporin-5 in the ocular lens. Exp Eye Res 108:94-102

Showing the most recent 10 out of 26 publications