The vast majority of diseases that cause catastrophic loss of vision do so as a result of abnormal angiogenesis and associated retinal edema, hemorrhage and gliosis. The research program supported by this grant for the past 15 years initially focused on understanding the role of adhesion receptors (e.g., integrins) in ocular angiogenesis and developing ways to inhibit abnormal neovascularization. Several years ago, we indentified and characterized endothelial and myeloid progenitor cells as potential therapeutics useful for vascular- and neurotrophic rescue in the treatment of retinal vascular and neuronal degenerative diseases. By studying the fates of these progenitor cells after implantation into eyes of rodent models of retinal disease, we indentified additional cell populations (e.g., microglia, astrocytes, Muller glia) critical to maintaining normal vascular and neuronal networks in the retina. In the next project period, we will continue our studies on mechanisms of basic retinal angiogenesis, developing approaches to inhibit abnormal vessel growth and understanding paracrine effects of endothelium and glia on neuronal parenchyma. We will use novel Cre-inducible transgenic mice in which we have deleted selected angiogenesis-associated genes in specific cell types. The development of the retinal, as well as regression of the hyaloidal, vasculature will be studied in these mice under normal and hypoxic conditions. We will also assess the effect of injected and novel cell-based delivery systems for the delivery of combination angiostatic and neurotrophic therapies in models of retinal neovascularization. The overarching hypothesis driving this research program is that physiological angiogenesis differs from pathological angiogenesis largely as a result of """"""""miscues"""""""" between interacting cell populations and their micro-environments;while the principle participant is the endothelial cell, other cells are critical to vessel formation and these include microglia, inflammatory cells and even neurons. We will continue to explore the relationship between these cells types, how they influence the extracellular matrix (e.g., """"""""microenvironment"""""""") and what molecules they influence during """"""""cross-talk"""""""". This will be accomplished through the following Specific Aims: (1) We will explore the potential utility of combination angiostatic therapy and targeted cell-based delivery of angiostatics and neurotrophics in treating ocular neovascularization;(2) We will explore and define the role of non-endothelial cells in retinal angiogenesis and vascular regression;and (3) Using novel metabolomic analyses we will identify molecules associated with hypoxia driven angiogenesis in physiologically relevant models of angiogenesis.

Public Health Relevance

The vast majority of diseases that cause catastrophic loss of vision do so as a result of abnormal blood vessel growth (angiogenesis) and associated retinal edema, hemorrhage and gliosis. Using rodent models of retinal vascular diseases such as diabetic retinopathy and age related macular degeneration, we will explore the utility of novel anti-angiogenic and neurotrophic drugs for the treatment of retinal vascular and neuronal degenerative diseases.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY011254-16
Application #
8438448
Study Section
Special Emphasis Panel (ZRG1-BDPE-N (09))
Program Officer
Shen, Grace L
Project Start
1996-03-01
Project End
2017-02-28
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
16
Fiscal Year
2013
Total Cost
$734,251
Indirect Cost
$333,323
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Murinello, Salome; Usui, Yoshihiko; Sakimoto, Susumu et al. (2018) miR-30a-5p inhibition promotes interaction of Fas+ endothelial cells and FasL+ microglia to decrease pathological neovascularization and promote physiological angiogenesis. Glia :
Keir, Lindsay S; Firth, Rachel; Aponik, Lyndsey et al. (2017) VEGF regulates local inhibitory complement proteins in the eye and kidney. J Clin Invest 127:199-214
Xiao, Sa; Bucher, Felicitas; Wu, Yue et al. (2017) Fully automated, deep learning segmentation of oxygen-induced retinopathy images. JCI Insight 2:
Levin, Leonard A; Miller, Joan W; Zack, Donald J et al. (2017) Special Commentary: Early Clinical Development of Cell Replacement Therapy: Considerations for the National Eye Institute Audacious Goals Initiative. Ophthalmology 124:926-934
Wang, Junhua; Westenskow, Peter D; Fang, Mingliang et al. (2016) Quantitative metabolomics of photoreceptor degeneration and the effects of stem cell-derived retinal pigment epithelium transplantation. Philos Trans A Math Phys Eng Sci 374:
Westenskow, Peter D; Bucher, Felicitas; Bravo, Stephen et al. (2016) iPSC-Derived Retinal Pigment Epithelium Allografts Do Not Elicit Detrimental Effects in Rats: A Follow-Up Study. Stem Cells Int 2016:8470263
Kurihara, Toshihide; Westenskow, Peter D; Gantner, Marin L et al. (2016) Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. Elife 5:
Paris, Liliana P; Johnson, Caroline H; Aguilar, Edith et al. (2016) Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics 12:15
Murinello, Salome; Moreno, Stacey K; Macauley, Matthew S et al. (2016) Assessing Retinal Microglial Phagocytic Function In Vivo Using a Flow Cytometry-based Assay. J Vis Exp :
Barnett, Faith H; Rosenfeld, Mauricio; Wood, Malcolm et al. (2016) Macrophages form functional vascular mimicry channels in vivo. Sci Rep 6:36659

Showing the most recent 10 out of 53 publications