The ubiquity of cortico-cortical feedback connections argues strongly for their importance, and theoreticians routinely make use of them in models of cortical function. Despite this, next to nothing is known about their function. The existing studies in which feedback has been manipulated have been performed in anesthetized animals, and our preliminary studies in alert animals reveal fundamentally different results. We thus propose to embark on a new exploration of the function of cortico-cortical feedback in alert animals, making use of chronically implanted cryoloops and multi-electrode arrays. We will use these devices to reversibly inactivate a portion of the 2nd and 3rd visual areas (V2/V3) within the lunate sulcus-corresponding to the inferior, contralateral quadrant of visual space within approximately 15 degrees of the fovea-while recording the visually evoked responses of neurons in striate cortex (V1). We will systematically explore the extent to which feedback exerts specific influences, such as those in theoretical proposals for "predictive encoding," as opposed to a more generic form of gain control. In addition to testing the specificity of cortico-cortical feedback, we will use our manipulations to probe the mechanisms of center-surround opponency and to determine to what extent local, intrinsic connections can subserve various receptive field properties. Our studies will shed light on the basic mechanisms of cortical function.

Public Health Relevance

A number of human mental diseases are believed to be, fundamentally, developmental disorders that result in abnormal cortical connectivity. The autism spectrum disorders are but one important example (Minshew &Williams 2007) where the principle functional deficits appear to concern integration of information and these have been linked to abnormalities in corticocortical connectivity as assessed by both functional and anatomical magnetic resonance imaging (Just et al. 2007, Herbert et al. 2004). Schizophrenia is another neurodevelopmental disorder in which an impairment of feedback processing has been specifically implicated (Dima et al. 2010, Kemner et al. 2009, Williams et al. 2009), and, given that we know very little about the various roles played by feedback connections, the insights gained from the proposed studies will aid efforts to piece together the pathophysiology of cortical mis-wiring syndromes.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY011379-16
Application #
8446420
Study Section
Special Emphasis Panel (ZRG1-IFCN-E (02))
Program Officer
Steinmetz, Michael A
Project Start
1996-05-01
Project End
2016-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
16
Fiscal Year
2013
Total Cost
$400,285
Indirect Cost
$162,785
Name
Harvard University
Department
Biology
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Gómez-Laberge, Camille; Smolyanskaya, Alexandra; Nassi, Jonathan J et al. (2016) Bottom-Up and Top-Down Input Augment the Variability of Cortical Neurons. Neuron 91:540-7
Ruff, Douglas A; Born, Richard T (2015) Feature attention for binocular disparity in primate area MT depends on tuning strength. J Neurophysiol 113:1545-55
Born, Richard T; Trott, Alexander R; Hartmann, Till S (2015) Cortical magnification plus cortical plasticity equals vision? Vision Res 111:161-9
Smolyanskaya, Alexandra; Haefner, Ralf M; Lomber, Stephen G et al. (2015) A Modality-Specific Feedforward Component of Choice-Related Activity in MT. Neuron 87:208-19
Mundell, Nathan A; Beier, Kevin T; Pan, Y Albert et al. (2015) Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms. J Comp Neurol 523:1639-63
Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel et al. (2014) Corticocortical feedback increases the spatial extent of normalization. Front Syst Neurosci 8:105
Smolyanskaya, Alexandra; Ruff, Douglas A; Born, Richard T (2013) Joint tuning for direction of motion and binocular disparity in macaque MT is largely separable. J Neurophysiol 110:2806-16
Nassi, Jonathan J; Lomber, Stephen G; Born, Richard T (2013) Corticocortical feedback contributes to surround suppression in V1 of the alert primate. J Neurosci 33:8504-17
Price, Nicholas S C; Born, Richard T (2013) Adaptation to speed in macaque middle temporal and medial superior temporal areas. J Neurosci 33:4359-68
Smolyanskaya, Alexandra; Born, Richard T (2012) Neuroscience: Attention is more than meets the eye. Nature 489:371-2

Showing the most recent 10 out of 31 publications