The first event in light perception is absorption of a photon by an opsin visual pigment in a rod or cone photoreceptor cell. This causes isomerization of the 11-cis-retinaldehyde (11-cis-RAL) chromophore to all-trans-retinaldehyde (all-trans-RAL), which decays to yield apo-opsin and free all-trans-RAL. Light sensitivity is regained by apo-opsin when it recombines with another 11-cis-RAL. Synthesis of 11-cis-RAL is carried out by an enzyme pathway called the Visual Cycle in cells of the retinal pigment epithelium (RPE). Accumulating evidence suggests that cones may have access to another source of visual chromophore in M?ller cells through a second hypothesized pathway called the Alternate Visual Cycle. This pathway is thought to provide visual chromophore specifically to cones under daylight conditions. We identified the critical isomerase of the Alternate Visual Cycle (isomerase-2) as dihydroceramide desaturase-1 (DES1). The rate of retinol isomerization by DES1 is 300-fold faster than the rate of isomerization catalyzed by Rpe65 of the RPE Visual Cycle. Clinically, the Alternate Visual Cycle, which is located entirely within the retina, may protect photoreceptors from rapid degeneration following retinal detachment, where the retina and RPE become physically separated. This proposal is to characterize the visual-retinoid processing activity of DES1, and to study its role in the Alternate Visual cycle. We recently made the important preliminary observation that the isomerase-2 activity of DES1 is potently stimulated by visible light. This result suggests that under daylight conditions, vertebrates (including humans) capture light energy in their retinas to regenerate visual chromophore. It has been known for some time that insects and other invertebrates regenerate their visual pigments using light energy. The observation that light contributes to chromophore regeneration in animals is unprecedented. Further, this process appears to take place through a novel biochemical mechanism: absorption of a 550-nm photon by a radical-cation of vitamin A inside the DES1 protein. Besides in-depth biochemical characterization of DES1, we will study light-stimulated regeneration of visual chromophore in cultured cells and in live, genetically modified mice.

Public Health Relevance

Our ability to see under daylight conditions requires rapid regeneration of cone visual-pigments. An Alternate Visual Cycle in the retina that performs this function has been proposed. The current application is to study this pathway, based on the recent identification of new enzymes that metabolize vitamin A in M?ller cells of the retina.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
2R01EY011713-17A1
Application #
8579855
Study Section
Special Emphasis Panel (BVS)
Program Officer
Neuhold, Lisa
Project Start
1997-03-01
Project End
2018-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
17
Fiscal Year
2013
Total Cost
$501,501
Indirect Cost
$175,851
Name
University of California Los Angeles
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Lenis, Tamara L; Hu, Jane; Ng, Sze Yin et al. (2018) Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration. Proc Natl Acad Sci U S A 115:E11120-E11127
Cook, Jeremy D; Ng, Sze Yin; Lloyd, Marcia et al. (2017) Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium. J Biol Chem 292:21407-21416
Kaylor, Joanna J; Xu, Tongzhou; Ingram, Norianne T et al. (2017) Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate. Nat Commun 8:16
Kaylor, Joanna J; Radu, Roxana A; Bischoff, Nicholas et al. (2015) Diacylglycerol O-acyltransferase type-1 synthesizes retinyl esters in the retina and retinal pigment epithelium. PLoS One 10:e0125921
Kaylor, Joanna J; Cook, Jeremy D; Makshanoff, Jacob et al. (2014) Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT). Proc Natl Acad Sci U S A 111:7302-7
Sato, Kota; Li, Songhua; Gordon, William C et al. (2013) Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J Neurosci 33:17458-68
Kaylor, Joanna J; Yuan, Quan; Cook, Jeremy et al. (2013) Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol 9:30-6
Kawaguchi, Riki; Yu, Jiamei; Ter-Stepanian, Mariam et al. (2011) Receptor-mediated cellular uptake mechanism that couples to intracellular storage. ACS Chem Biol 6:1041-51
Blakeley, Lorie R; Chen, Chunhe; Chen, Ching-Kang et al. (2011) Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation. Invest Ophthalmol Vis Sci 52:3483-91
Radu, Roxana A; Hu, Jane; Yuan, Quan et al. (2011) Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 286:18593-601

Showing the most recent 10 out of 22 publications