The overall goal of our research is to determine the role of deamidation in the lens. During the last grant cycle, we convincingly demonstrated that deamidation led to soluble aggregates, destabilized b-crystallins, altered interactions between b-subunits, and increased the a-crystallin needed to chaperone b-crystallins. These results suggest a mechanism for deamidation-induced insolubilization of crystallins and strongly support that deamidation contributes directly to cataract formation. Based on our findings, we hypothesize that deamidation decreases crystallin stability leading to aggregation that eventually triggers cataract formation. Experiments in Aim 1 will identify potentially relevant deamidations in the lens. Next, we will determine if deamidations previously identified to cause aggregation or decrease stability directly lead to cataract formation by using an in vivo model. Experiments in Aim 2 will determine the mechanism by which deamidation triggers aggregation, by identifying altered interactions within b-crystallins and with the a-chaperone. Numerous deamidation sites exist in the b-crystallins. The proposed experiments are innovative in that they will distinguish between functionally relevant sites and those that are detrimental, using state-of-the art approaches to directly test the role of deamidation in vivo. Future studies will screen for agents that prevent crystallin aggregation.

Public Health Relevance

Cataracts are the leading cause of blindness worldwide and one of the largest expenses to the U.S. government's health care system. Our research suggests that the major age-related modification in the lens, deamidation, alters structure and function of the lens crystallins and may induce aggregation associated with cataracts in vivo. Being able to prevent deamidation-induced aggregation of lens crystallins may prevent cataracts and help to prevent other aggregation diseases.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY012239-13
Application #
8288836
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Araj, Houmam H
Project Start
1998-08-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2014-06-30
Support Year
13
Fiscal Year
2012
Total Cost
$292,723
Indirect Cost
$102,643
Name
Oregon Health and Science University
Department
Dentistry
Type
Schools of Dentistry
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Lampi, Kirsten J; Wilmarth, Phillip A; Murray, Matthew R et al. (2014) Lens ?-crystallins: the role of deamidation and related modifications in aging and cataract. Prog Biophys Mol Biol 115:21-31
Takata, Takumi; Smith, Joshua P; Arbogast, Brian et al. (2010) Solvent accessibility of betaB2-crystallin and local structural changes due to deamidation at the dimer interface. Exp Eye Res 91:336-46
Michiel, Magalie; Duprat, Elodie; Skouri-Panet, Feriel et al. (2010) Aggregation of deamidated human betaB2-crystallin and incomplete rescue by alpha-crystallin chaperone. Exp Eye Res 90:688-98
Takata, Takumi; Woodbury, Luke G; Lampi, Kirsten J (2009) Deamidation alters interactions of beta-crystallins in hetero-oligomers. Mol Vis 15:241-9
Takata, Takumi; Oxford, Julie T; Demeler, Borries et al. (2008) Deamidation destabilizes and triggers aggregation of a lens protein, betaA3-crystallin. Protein Sci 17:1565-75
Chen, Ling; Holland, Gary N; Yu, Fei et al. (2008) Associations of seroreactivity against crystallin proteins with disease activity and cataract in patients with uveitis. Invest Ophthalmol Vis Sci 49:4476-81
Boros, Sandor; Wilmarth, Phillip A; Kamps, Bram et al. (2008) Tissue transglutaminase catalyzes the deamidation of glutamines in lens betaB(2)- and betaB(3)-crystallins. Exp Eye Res 86:383-93
Takata, Takumi; Oxford, Julie T; Brandon, Theodore R et al. (2007) Deamidation alters the structure and decreases the stability of human lens betaA3-crystallin. Biochemistry 46:8861-71
Fujii, N; Shimmyo, Y; Sakai, M et al. (2007) Age-related changes of alpha-crystallin aggregate in human lens. Amino Acids 32:87-94
Brown, Zachery; Ponce, Aldo; Lampi, Kirsten et al. (2007) Differential binding of mutant (R116C) and wildtype alphaA crystallin to actin. Curr Eye Res 32:1051-4

Showing the most recent 10 out of 12 publications