The overall objectives are to develop nuclear magnetic resonance (NMR) techniques and use them in concert with other experimental approaches to elucidate the molecular structure and physiologic functions of selected membrane-targeting proteins involved in phototransduction in vision and other signal transduction processes. During the next five years, we will use NMR, fluorescence, microcalorimetry, spin-label EPR, x-ray crystallography, and computational analysis to delineate the structure, dynamics and mechanisms of a family of neuronal calcium sensor proteins (calcium-myristoyl switches) that serve as membrane-targeting regulators in calcium signaling and are linked to retinal and neurological diseases. Our studies will focus on retinal recoverin, involved in cancer-associated retinopathy;guanylate cyclase activating proteins (GCAPs), linked to autosomal dominant cone dystrophy;and calcium binding protein-4 (CaBP4), implicated in autosomal recessive night blindness. By continuing our intensive study of retinal recoverin and the GCAP proteins and by broadening its scope to encompass neuronal homologs and protein targets, we hope to gain an atomic-level understanding of how calcium sensor proteins operate in signal transduction and disease processes. In particular, we want to understand how covalently attached myristoyl groups work in concert with calcium-binding sites and target proteins to guide this family of proteins to specific membrane-bound targets.
The specific aims are 3-fold: (1) Determine the structure of the activator forms of GCAP1 (Ca2+ free state and constitutively active mutants) and probe their structural interactions with retinal guanylate cyclase. (2) Determine the atomic-level structures of Ca2+-myristoyl switch proteins and their target proteins assembled on lipid bilayer membranes using novel spin-label EPR and solid-state NMR techniques combined with computational molecular dynamics simulations. (3) Determine the atomic-level structures of the retinal calcium sensor protein (CaBP4) and elucidate its structural interaction and regulation of retinal Ca2+ channels (CaV1.4) at the rod and cone synapse implicated in retinal diseases.

Public Health Relevance

Calcium ion (Ca2+) controls the excitability of light-sensitive rod and cone cells in the retina and defects in light-dependent calcium signaling are linked to retinal degenerative diseases. The goal of our research is to elucidate the molecular structure and mechanisms of calcium sensor proteins that regulate light-adaptation and disease processes during visual excitation.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-G (90))
Program Officer
Neuhold, Lisa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
Schools of Arts and Sciences
United States
Zip Code
Wang, Yan; Xiao, Wenwu; Zhang, Yonghong et al. (2016) Optimization of RGD-Containing Cyclic Peptides against αvβ3 Integrin. Mol Cancer Ther 15:232-40
Yu, Qinhong; Lim, Sunghyuk; Rockwell, Nathan C et al. (2016) 1H, 15N, and 13C chemical shift assignments of cyanobacteriochrome NpR6012g4 in the red-absorbing dark state. Biomol NMR Assign 10:139-42
Turner, Matthew; Anderson, David E; Rajan, Sahana et al. (2016) Chemical shift assignments of the C-terminal EF-hand domain of α-actinin-1. Biomol NMR Assign 10:219-22
Lim, Sunghyuk; Peshenko, Igor V; Olshevskaya, Elena V et al. (2016) Structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) Mutant V77E in a Ca2+-free/Mg2+-bound Activator State. J Biol Chem 291:4429-41
Maric, Danijela; Olson, Cheryl L; Xu, Xianzhong et al. (2015) Calcium-dependent membrane association of a flagellar calcium sensor does not require calcium binding. Mol Biochem Parasitol 201:72-5
Turner, Matthew; Zhang, Yonghong; Carlson, Hanqian L et al. (2015) Chemical shift assignments of mouse HOXD13 DNA binding domain bound to duplex DNA. Biomol NMR Assign 9:267-70
Lim, Sunghyuk; Rockwell, Nathan C; Martin, Shelley S et al. (2014) Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2164g3' [corrected]. Photochem Photobiol Sci 13:951-62
Li, Congmin; Ames, James B (2014) ¹H, ¹³C, and ¹⁵N chemical shift assignments of neuronal calcium sensor protein, hippocalcin. Biomol NMR Assign 8:63-6
Park, Saebomi; Li, Congmin; Haeseleer, Françoise et al. (2014) Structural insights into activation of the retinal L-type Ca²⁺ channel (Cav1.4) by Ca²⁺-binding protein 4 (CaBP4). J Biol Chem 289:31262-73
Park, Saebomi; Li, Congmin; Ames, James B (2014) ¹H, ¹⁵N, and ¹³C chemical shift assignments of murine calcium-binding protein 4. Biomol NMR Assign 8:361-4

Showing the most recent 10 out of 65 publications