Investigations of the cellular organization and composition of the retina have provided an understanding of how humans visualize their surroundings and a framework necessary to cure human retinal diseases. Nevertheless, many questions about vertebrate retinal function remain unanswered. For example, although many of the components involved in cone photoreceptor light responses have been identified, the precise mechanisms by which these molecules function to define cone physiology as distinct from rod physiology are unclear. Also, although different cone types in the vertebrate retina are thought likely to express unique molecules, few such molecules have been identified. Identifying cell- type specific molecules would answer questions both about the formation of specific connections within the retina and questions about the establishment of cell-type position and identity. The goal of this proposal is use zebrafish mutants to answer these questions. We have developed a behavioral assay that efficiently identifies zebrafish mutants with subtle and specific defects in retinal function. 1). We will continue to isolate more mutations as a resource for understanding vertebrate retinal function. 2) We will characterize mutations in detail using biochemical, molecular and physiological approaches. We will focus initially on three mutations. Two of these, noa and nrb, produce abnormalities in cone photoreceptor physiology, and the third mutations, pob, causes the selective loss of red cone photoreceptors within the retina. Our characterization will help define the physiological responses of cone photoreceptors. 3.) We will also use the pob mutation to identify molecules specific to red-sensitive cone photoreceptors. 4). Finally, we will define the molecular nature of the defect in noa, nrb and pob by using a candidate gene or positional cloning approach. As a first step towards this end, we will generate a database of retina-specific genes and map these genes.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY012373-05
Application #
6627060
Study Section
Visual Sciences C Study Section (VISC)
Program Officer
Mariani, Andrew P
Project Start
1999-01-01
Project End
2003-12-31
Budget Start
2003-01-01
Budget End
2003-12-31
Support Year
5
Fiscal Year
2003
Total Cost
$203,427
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Taylor, Michael R; Kikkawa, Satoshi; Diez-Juan, Antonio et al. (2005) The zebrafish pob gene encodes a novel protein required for survival of red cone photoreceptor cells. Genetics 170:263-73
Van Epps, Heather A; Hayashi, Mitsuko; Lucast, Louise et al. (2004) The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring. J Neurosci 24:8641-50
Taylor, Michael R; Hurley, James B; Van Epps, Heather A et al. (2004) A zebrafish model for pyruvate dehydrogenase deficiency: rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. Proc Natl Acad Sci U S A 101:4584-9
Kennedy, Breandan N; Stearns, George W; Smyth, Vincent A et al. (2004) Zebrafish rx3 and mab21l2 are required during eye morphogenesis. Dev Biol 270:336-49
Cilluffo, Marianne C; Matthews, Hugh R; Brockerhoff, Susan E et al. (2004) Light-induced Ca2+ release in the visible cones of the zebrafish. Vis Neurosci 21:599-609
Brockerhoff, Susan E; Rieke, Fred; Matthews, Hugh R et al. (2003) Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof. J Neurosci 23:470-80
Brockerhoff, S E (2001) Retinal disease in vertebrates. Prog Brain Res 131:629-39
Van Epps, H A; Yim, C M; Hurley, J B et al. (2001) Investigations of photoreceptor synaptic transmission and light adaptation in the zebrafish visual mutant nrc. Invest Ophthalmol Vis Sci 42:868-74
Taylor, M R; Van Epps, H A; Kennedy, M J et al. (2000) Biochemical analysis of phototransduction and visual cycle in zebrafish larvae. Methods Enzymol 316:536-57