Cyclic nucleotide-gated ion channels play a fundamental role in signal transduction in the retina in the retina. In photoreceptor outer segments, they signal the fall in intracellular cGMP concentration that results from absorption of light by rhodopsin. At synapses between cone and horizontal cells, they regulate synaptic transmission and mediate presynaptic feedback by nitric oxide. The overall goal of our research is to elucidate the molecular mechanisms underlying the activity CNG channels. CNG channels are composed of four homologous subunits, each containing a single cyclic nucleotide-binding site. Ligand binding to these sites is coupled to conformational changes that lead to opening of the channel pore. Native CNG channels are thought to contain two different subunit types, alpha and beta; the assembly of these divergent subunits creates heteromeric CNG channels with properties optimized for their role in phototransduction. In this proposal, we will ascertain the structural determinants responsible for the assembly of these channels, the precise arrangement of their subunits and the molecular features that modulate their cyclic nucleotide specificity. In addition, we will examine the molecular mechanisms underlying mutations in CNG channel genes that have been linked to rod monochromasy and retinitis pigmentosa. The channels will be studied using electrophysiological recording of exogenously expressed cDNA clones in Xenopus oocytes and in a mammalian cell line, fluorescent microscopy of transfected cells to localize channels fused to green fluorescent protein, and biochemical and genetic protein interaction assays. These experiments will channels essential to signal transduction in the retina, and of the molecular mechanisms that lead to retinal degeneration and color-blindness.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY012836-02
Application #
6350901
Study Section
Visual Sciences C Study Section (VISC)
Program Officer
Mariani, Andrew P
Project Start
2000-02-04
Project End
2004-01-31
Budget Start
2001-02-01
Budget End
2002-01-31
Support Year
2
Fiscal Year
2001
Total Cost
$224,462
Indirect Cost
Name
Washington State University
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
041485301
City
Pullman
State
WA
Country
United States
Zip Code
99164
McGinn, Timothy E; Mitchell, Diana M; Meighan, Peter C et al. (2018) Restoration of Dendritic Complexity, Functional Connectivity, and Diversity of Regenerated Retinal Bipolar Neurons in Adult Zebrafish. J Neurosci 38:120-136
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D (2014) Alternative splicing governs cone cyclic nucleotide-gated (CNG) channel sensitivity to regulation by phosphoinositides. J Biol Chem 289:13680-90
Liu, Chunming; Sherpa, Tshering; Varnum, Michael D (2013) Disease-associated mutations in CNGB3 promote cytotoxicity in photoreceptor-derived cells. Mol Vis 19:1268-81
Dai, Gucan; Peng, Changhong; Liu, Chunming et al. (2013) Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides. J Gen Physiol 141:413-30
Dai, Gucan; Varnum, Michael D (2013) CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions. Am J Physiol Cell Physiol 305:C147-59
Meighan, Starla E; Meighan, Peter C; Rich, Elizabeth D et al. (2013) Cyclic nucleotide-gated channel subunit glycosylation regulates matrix metalloproteinase-dependent changes in channel gating. Biochemistry 52:8352-62
Meighan, Peter C; Meighan, Starla E; Rich, Elizabeth D et al. (2012) Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels. Channels (Austin) 6:181-96
Duricka, Deborah L; Brown, R Lane; Varnum, Michael D (2012) Defective trafficking of cone photoreceptor CNG channels induces the unfolded protein response and ER-stress-associated cell death. Biochem J 441:685-96
Yamamoto, B J; Elias, P D; Masino, J A et al. (2010) The angiotensin IV analog Nle-Tyr-Leu-psi-(CH2-NH2)3-4-His-Pro-Phe (norleual) can act as a hepatocyte growth factor/c-Met inhibitor. J Pharmacol Exp Ther 333:161-73
Bright, Scott R; Rich, Elizabeth D; Varnum, Michael D (2007) Regulation of human cone cyclic nucleotide-gated channels by endogenous phospholipids and exogenously applied phosphatidylinositol 3,4,5-trisphosphate. Mol Pharmacol 71:176-83

Showing the most recent 10 out of 17 publications