Connexins are the subunit proteins of gap junctions, which allow the exchange of ions, second messengers and small metabolites between adjacent cells through intercellular channels. Gap junctional communication is important in the development and maintenance of lens, as mutations in lens connexin genes cause cataract and developmental defects in humans and mice. Signal transduction pathways have also been shown to play critical roles in lens development and homeostasis, and mutations in signaling genes like phosphatase and tensin homolog (PTEN) cause complex human syndromic disorders that include cataract. Although great progress has been made, there are still substantial gaps in our knowledge about potential cooperation between these two different intercellular communication systems. In this proposal, our objective is to further define how gap junctional communication interacts with other intercellular signal transduction pathways in the lens. We propose first to examine the consequences of PI3K deficiency by generating and characterizing conditional knockout mice lacking the p110a and p110b catalytic subunits of PI3K in the lens. Second, we will make conditional knockout mice lacking PTEN in the lens, and examine their phenotype. Finally, we will investigate interactions between lens gap junctional coupling and the PI3K/Akt and PTEN signaling pathways in postnatal growth and homeostasis by using pharmacological blockers, electrophysiological measurements and biochemical assays in vitro. We will also cross PI3K and PTEN conditional knockout animals with connexin knockout mice to confirm interactions in vivo. These studies will provide insights into how gap junctional coupling and signal transduction pathways synergistically interact to regulate lens growth and homeostasis by combining in vitro pharmacological and electrophysiological assays with in vivo animal models. They also will broaden the general paradigm of how an integrated system of intercellular communication contributes to the regulation of development in many tissues.

Public Health Relevance

Mutations in connexin genes cause a broad spectrum of human health problems including cataract and ocular developmental defects in humans and mice. Mutations in phosphatase and tensin homolog (PTEN) cause a complex human syndromic disorder that includes cataract. Genetic studies have revealed much about cataract causing mutations in these different genes, but there are still substantial gaps in our knowledge about potential cooperation between these two different intercellular communication systems in preventing cataract in the normal lens. The proposed studies will further characterize these genes that cause congenital cataract, and also further characterize the control of the cell cycle in lens epithelia by integrated communication pathways.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY013163-12
Application #
8389900
Study Section
Special Emphasis Panel (ZRG1-BDCN-H (02))
Program Officer
Araj, Houmam H
Project Start
2000-07-01
Project End
2016-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
12
Fiscal Year
2013
Total Cost
$393,736
Indirect Cost
$143,281
Name
State University New York Stony Brook
Department
Physiology
Type
Schools of Medicine
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Sellitto, Caterina; Li, Leping; Vaghefi, Ehsan et al. (2016) The Phosphoinosotide 3-Kinase Catalytic Subunit p110α is Required for Normal Lens Growth. Invest Ophthalmol Vis Sci 57:3145-51
Shi, Qian; Gu, Sumin; Yu, X Sean et al. (2015) Connexin Controls Cell-Cycle Exit and Cell Differentiation by Directly Promoting Cytosolic Localization and Degradation of E3 Ligase Skp2. Dev Cell 35:483-96
Gao, Junyuan; Sun, Xiurong; White, Thomas W et al. (2015) Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens. Biophys J 109:1830-9
Martinez, Jennifer M; Wang, Hong-Zhan; Lin, Richard Z et al. (2015) Differential regulation of Connexin50 and Connexin46 by PI3K signaling. FEBS Lett 589:1340-5
Slavi, Nefeli; Rubinos, Clio; Li, Leping et al. (2014) Connexin 46 (cx46) gap junctions provide a pathway for the delivery of glutathione to the lens nucleus. J Biol Chem 289:32694-702
Rubinos, Clio; Villone, Krista; Mhaske, Pallavi V et al. (2014) Functional effects of Cx50 mutations associated with congenital cataracts. Am J Physiol Cell Physiol 306:C212-20
Sellitto, Caterina; Li, Leping; Gao, Junyuan et al. (2013) AKT activation promotes PTEN hamartoma tumor syndrome-associated cataract development. J Clin Invest 123:5401-9
Gao, Junyuan; Wang, Huan; Sun, Xiurong et al. (2013) The effects of age on lens transport. Invest Ophthalmol Vis Sci 54:7174-87
Gao, Junyuan; Sun, Xiurong; Moore, Leon C et al. (2013) The effect of size and species on lens intracellular hydrostatic pressure. Invest Ophthalmol Vis Sci 54:183-92
White, Thomas W (2013) Is half of a lens gap junction channel better than none? Focus on ""properties of two cataract-associated mutations located in the NH2 terminus of connexin 46"". Am J Physiol Cell Physiol 304:C821-2

Showing the most recent 10 out of 49 publications