Recurrent HSV-1 infection as a result of viral reactivation is a major cause of viral induced blindness. Our overall goal is elucidation of the underlying molecular mechanisms behind the HSV-1 latency-reactivation cycle, hopefully leading to development of a means for reducing HSV-1 reactivation and hence the incidence of HSV-1 induced corneal blindness. LAT, the only viral gene abundantly transcribed during latency enhances the reactivation phenotype by blocking apoptosis. Since no LAT protein has been reported, LAT is thought to function via a noncoding RNA. In contrast to this notion, we now have strong evidence for an anti-apoptotic LAT protein (L2) that is expressed during latency. We also have evidence for the first small LAT RNA (RNA-1) that also appears to have anti-apoptosis activity. Since LAT's anti-apoptosis activity is its most important latency related function and since L2 and RNA-1 both appear to have anti-apoptosis activity and are encoded by the functional 1st 1.5 Kb of LAT, we hypothesize that both contribute to LAT's ability to enhance the reactivation phenotype.
Our Specific Aims to pursue these novel innovative findings include: 1. Confirm the hypotheses that L2 (encoded by nts 487-669) and spliced-L2 are authentic LAT proteins with anti-apoptosis activity by: a) Humanizing the L2 ORF nt sequence without changing the L2 amino acid sequence in a plasmid expressing the functional 1st 1.5 Kb of LAT and confirming retention of the plasmid's anti-apoptosis activity;b) Expressing the humanized L2 (h-L2) ORF (60 aa) vs. the h-spliced-L2 ORF (118 aa) in plasmids with no LAT flanking sequences and confirming their anti-apoptosis activity;c) Tagging the C- terminus of L2 and spliced-L2 with myc in separate otherwise wt viruses and determining changes in their expression during acute infection vs. latent infection vs. reactivation. 2. Confirm the hypothesis that L2, spliced-L2, and RNA-1 contribute to LAT's ability to support the wt reactivation phenotype and that at least one of them exerts its main influence during reactivation rather than establishment of latency by: a) Constructing knock out mutants and confirming their reduced reactivation phenotype;b) Constructing mutants that express just h-L2, h-spliced-L2, or RNA-1 and confirming that they have an increased reactivation phenotype compared to LAT(-) viruses;c) Blocking expression/function of L2, spliced-L2, or RNA-1 during establishment of latency vs. reactivation, and determining the effect on the reactivation phenotype. 3. Test the hypothesis that L2, spliced-L2, and RNA-1 interfere with apoptosis via different mechanisms by: a) Confirming that they have differing abilities to block apoptosis induced by different agents/methods; b) Confirming that they block different steps in the extrinsic Fas pathway;c) Determining if they bind to different apoptotic factors, suggesting that they block function of the bound apoptotic factor.

Public Health Relevance

In the US recurrent ocular herpes simplex virus type 1 (HSV-1) infection is the leading cause of corneal blindness due to an infectious agent, making ocular HSV-1 a clinically important problem. This proposal is directed at understanding the molecular mechanisms by which the HSV-1 LAT gene enhances the virus'reactivation phenotype. The knowledge gained here will be critical for the longer term goal of developing efficacious clinical interventions that target LAT and thereby decrease the incidence and/or severity of recurrent ocular herpetic disease. page 1of 1

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY013191-13
Application #
8466973
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Mckie, George Ann
Project Start
2000-07-01
Project End
2014-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
13
Fiscal Year
2013
Total Cost
$453,576
Indirect Cost
$157,121
Name
University of California Irvine
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Perng, Guey-Chuen; Osorio, Nelson; Jiang, Xianzhi et al. (2016) Large Amounts of Reactivated Virus in Tears Precedes Recurrent Herpes Stromal Keratitis in Stressed Rabbits Latently Infected with Herpes Simplex Virus. Curr Eye Res 41:284-91
Jester, James V; Morishige, Naoyuki; BenMohamed, Lbachir et al. (2016) Confocal Microscopic Analysis of a Rabbit Eye Model of High-Incidence Recurrent Herpes Stromal Keratitis. Cornea 35:81-8
Jiang, Xianzhi; Brown, Don; Osorio, Nelson et al. (2016) Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency-associated transcript (LAT)-negative mutant dLAT2903 with a disrupted LAT miR-H2. J Neurovirol 22:38-49
Srivastava, Ruchi; Dervillez, Xavier; Khan, Arif A et al. (2016) The Herpes Simplex Virus Latency-Associated Transcript Gene Is Associated with a Broader Repertoire of Virus-Specific Exhausted CD8+ T Cells Retained within the Trigeminal Ganglia of Latently Infected HLA Transgenic Rabbits. J Virol 90:3913-28
Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi et al. (2015) The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT). J Neurovirol 21:568-75
Srivastava, Ruchi; Khan, Arif A; Spencer, Doran et al. (2015) HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice J Immunol 194:2232-48
Khan, Arif A; Srivastava, Ruchi; Spencer, Doran et al. (2015) Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol 89:3776-92
BenMohamed, Lbachir; Osorio, Nelson; Srivastava, Ruchi et al. (2015) Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) mutant using the in vivo mouse UV-B model of induced reactivation. J Neurovirol 21:508-17
Jiang, Xianzhi; Brown, Don; Osorio, Nelson et al. (2015) A herpes simplex virus type 1 mutant disrupted for microRNA H2 with increased neurovirulence and rate of reactivation. J Neurovirol 21:199-209
Mott, Kevin R; Allen, Sariah J; Zandian, Mandana et al. (2014) Inclusion of CD80 in HSV targets the recombinant virus to PD-L1 on DCs and allows productive infection and robust immune responses. PLoS One 9:e87617

Showing the most recent 10 out of 42 publications