The absorption of photons in rods and cones of the retina activates a cascade of biochemical reactions (phototransduction cascade) that generates the electrical response to light. The activation and deactivation of the cascade ultimately limits the amplitude and kinetics of the transduced signal, and thus the sensitivity and temporal resolution of vision. The overall goal of this study is to understand the mechanisms that turn off the light response in intact mouse photoreceptors. Gene targeting techniques will be used to manipulate the function of a subset of proteins that have been suggested to play key roles in deactivation of the cascade, and the resulting changes in the photoresponses of single rod cells will be determined by electrical recording and changes in protein localization determined by real-time 2-photon imaging. Using these approaches, we will address three important questions: (1) What is the time course of rhodopsin deactivation, and how is it determined by the interactions between rhodopsin kinase (GRK1) and arrestin (Arr1)? (2) How does G*-E* deactivation determine recovery of the flash response, and how does changing the rate of this deactivation get relayed across the synapse to affect visual function? and (3) What are the long-lasting mechanisms of light adaptation that alter the kinetics of photoresponse deactivation?

Public Health Relevance

Relevance This research will provide a fundamental mechanistic understanding of the initial steps in the normal visual process and adaptation, which may help to provide insights for the pathogenesis of diseases that arise from failures of deactivation, such as in some forms of retinitis pigmentosa, Oguchi disease, Nougaret's nightblindness, and rod-cone dystrophy. This research addresses one of the objectives recommended by the Retinal Diseases Panel (http://www.nei.nih.gov/strategicplanning/np_retinal.asp#obj), which is to Analyze the mechanisms underlying light adaptation and recovery following phototransduction and understand the changes in neural coding in light/dark adaptation. In a broader context, these experiments will provide reveal new knowledge of deactivation of G-protein cascades in general, which all eukaryotic cells use to transduce extracellular signals into intracellular responses.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY014047-13
Application #
8658821
Study Section
Special Emphasis Panel (ZRG1-CB-G (90))
Program Officer
Neuhold, Lisa
Project Start
2002-05-01
Project End
2016-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
13
Fiscal Year
2014
Total Cost
$503,340
Indirect Cost
$174,037
Name
University of California Davis
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Ronning, Kaitryn E; Allina, Gabriel Peinado; Miller, Eric B et al. (2018) Loss of cone function without degeneration in a novel Gnat2 knock-out mouse. Exp Eye Res 171:111-118
Peinado Allina, Gabriel; Fortenbach, Christopher; Naarendorp, Franklin et al. (2017) Bright flash response recovery of mammalian rods in vivo is rate limited by RGS9. J Gen Physiol 149:443-454
Burns, Marie E; Levine, Emily S; Miller, Eric B et al. (2016) New Developments in Murine Imaging for Assessing Photoreceptor Degeneration In Vivo. Adv Exp Med Biol 854:269-75
Zawadzki, Robert J; Zhang, Pengfei; Zam, Azhar et al. (2015) Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. Biomed Opt Express 6:2191-210
Fortenbach, Christopher R; Kessler, Christopher; Peinado Allina, Gabriel et al. (2015) Speeding rod recovery improves temporal resolution in the retina. Vision Res 110:57-67
Gross, Owen P; Pugh Jr, Edward N; Burns, Marie E (2015) cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses. Front Mol Neurosci 8:6
Zhang, Pengfei; Goswami, Mayank; Zam, Azhar et al. (2015) Effect of scanning beam size on the lateral resolution of mouse retinal imaging with SLO. Opt Lett 40:5830-3
Kessler, Christopher; Tillman, Megan; Burns, Marie E et al. (2014) Rhodopsin in the rod surface membrane regenerates more rapidly than bulk rhodopsin in the disc membranes in vivo. J Physiol 592:2785-97
Levine, Emily S; Zam, Azhar; Zhang, Pengfei et al. (2014) Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1. Vision Res 102:71-9
Arshavsky, Vadim Y; Burns, Marie E (2014) Current understanding of signal amplification in phototransduction. Cell Logist 4:e29390

Showing the most recent 10 out of 40 publications