Glaucoma is the second leading cause of blindness overall in the United States and first among African Americans. Elevated intraocular pressure from defects in the iris and aqueous humor drainage system in the anterior segment frequently accompanies glaucoma. Retinal ganglion cell death leading to glaucoma apparently results from the insult of chronically high IOP but the underlying molecular mechanisms are not understood. The genetic regulatory networks governing normal development of anterior segment structures are also poorly understood. Mice provide ideal models for determining the basic mechanisms contributing to normal eye development and for molecularly analyzing genetic eye disease. Mutations in the bicoid-related homeobox gene PITX2 result in Axenfeld-Rieger Syndrome (ARS), an autosomal dominant disease resulting in congenital anterior segment defects and glaucoma. I have cloned Pitx2 from mice and used gene targeting to generate an allelic series (null, hypomorphic, and conditional) for Pitx2 in mice. Initial analysis of the null allele established a more widespread requirement for Pitx2 in eye development than predicted from the human phenotype. Homzygotes mutants have defects in the optic nerve and posterior parts of the eye. The goal of this proposal is to use these mice to analyze the basic mechanisms of Pitx2 function in normal eye development and to identify the molecular consequences of partial or complete loss of Pitx2 activity. We will assess the hypothesis that Pitx2 has distinct functions in the ocular neural crest and mesoderm lineages. Pitx2 expression in each lineage will be determined after using binary transgenic systems to mark each cell lineage. These marking systems will also be used to compare the fates of each lineage in wild type and Pitx2-/- eyes, and determine the genetic mechanisms that require Pitx2. ARS results from altered Pitx2 dosage, indicating certain steps in eye development are highly sensitive to varied PITX2 protein levels. We will vary Pitx2 gene dosage using the null and hypomorphic alleles to identify the specific developmental functions that are most to variations in PITX2 levels and determine the underlying molecular mechanisms. Finally, we will use chimeric mice to rescue the lethality of Pitx2-/- mice in order to analyze Pitx2 functions later in eye development. This multifaceted approach should provide specific mechanistic details about the multiple functions of Pitx2 in eye development and also promises to provide insight into more general fundamental mechanisms of periocular mesenchyme in development. This basic information is essential for understanding eye disease.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
1R01EY014126-01
Application #
6507295
Study Section
Visual Sciences A Study Section (VISA)
Program Officer
Liberman, Ellen S
Project Start
2002-09-01
Project End
2005-08-31
Budget Start
2002-09-01
Budget End
2003-08-31
Support Year
1
Fiscal Year
2002
Total Cost
$316,081
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Genetics
Type
Schools of Medicine
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Seo, Seungwoon; Chen, Lisheng; Liu, Wenzhong et al. (2017) Foxc1 and Foxc2 in the Neural Crest Are Required for Ocular Anterior Segment Development. Invest Ophthalmol Vis Sci 58:1368-1377
Benson, Matthew D; Khor, Chiea C; Gage, Philip J et al. (2017) A targeted approach to genome-wide studies reveals new genetic associations with central corneal thickness. Mol Vis 23:952-962
Chen, Lisheng; Martino, Vanessa; Dombkowski, Alan et al. (2016) AP-2? Is a Downstream Effector of PITX2 Required to Specify Endothelium and Establish Angiogenic Privilege During Corneal Development. Invest Ophthalmol Vis Sci 57:1072-81
Chen, Lisheng; Gage, Philip J (2016) Heterozygous Pitx2 Null Mice Accurately Recapitulate the Ocular Features of Axenfeld-Rieger Syndrome and Congenital Glaucoma. Invest Ophthalmol Vis Sci 57:5023-5030
Davis, Shannon W; Mortensen, Amanda H; Keisler, Jessica L et al. (2016) ?-catenin is required in the neural crest and mesencephalon for pituitary gland organogenesis. BMC Dev Biol 16:16
Gage, Philip J; Hurd, Elizabeth A; Martin, Donna M (2015) Mouse Models for the Dissection of CHD7 Functions in Eye Development and the Molecular Basis for Ocular Defects in CHARGE Syndrome. Invest Ophthalmol Vis Sci 56:7923-30
Gage, Philip J; Kuang, Chen; Zacharias, Amanda L (2014) The homeodomain transcription factor PITX2 is required for specifying correct cell fates and establishing angiogenic privilege in the developing cornea. Dev Dyn 243:1391-400
French, Curtis R; Seshadri, Sudha; Destefano, Anita L et al. (2014) Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. J Clin Invest 124:4877-81
Plageman Jr, Timothy F; Zacharias, Amanda L; Gage, Phillip J et al. (2011) Shroom3 and a Pitx2-N-cadherin pathway function cooperatively to generate asymmetric cell shape changes during gut morphogenesis. Dev Biol 357:227-34
Zacharias, Amanda L; Lewandoski, Mark; Rudnicki, Michael A et al. (2011) Pitx2 is an upstream activator of extraocular myogenesis and survival. Dev Biol 349:395-405

Showing the most recent 10 out of 22 publications