My long-term goal is to understand the biological basis of visual processing at the level of neural circuits and synapses. I am pursuing this goal in the mammalian retina, a tissue comprised of ~70 cell types: ~3-4 photoreceptors (depending on species), ~50 interneurons (horizontal, bipolar and amacrine cells) and ~20 output neurons (ganglion cells). Over the past period, we focused on two types of ganglion cell (ON and OFF Alpha cell) and elucidated fundamental components of their synaptic inputs and mechanisms for contrast adaptation. These accomplishments allow us to now expand our studies to a dozen types of ganglion cell that we recognize based on a combination of functional properties (light-evoked synaptic conductance) and structural properties (dendritic tree diameter and stratification level in the inner plexiform layer).
Aim 1 will reveal fundamental circuit mechanisms for night vision, by determining how rod signals are transmitted, via an identified neural pathway, to each ganglion cell type. Rods synapse with rod bipolar cells, which in turn excite the AII amacrine cell;the AII cell signals directly certain ganglion cell types and indirectly others by synapsing with the presynaptic cone bipolar terminal. Preliminary data suggest that a small group of OFF ganglion cell types receives direct AII cell synapses;another group receives indirect synapses, whereas a third group lacks connection to the circuit and loses function in dim light. To encode visual signals in daylight, each ganglion cell type receives glutamatergic synapses from one or more types of cone bipolar cell, but we need to test which ganglion cell types encode glutamate release with an NMDA receptor (Aim 2). Compared to the other major type, AMPA receptors, NMDA receptors have a conductance that is voltage-dependent, lacks desensitization and has relatively slow kinetics. We want to understand the role of NMDA receptors in visual processing, and as a first step we will identify which ganglion cell types express them. For each type, we will test for functional expression by applying NMDA directly;we will test further whether these receptors contribute to high contrast responses under normal physiological conditions. Finally, we will test quantitatively the role of NMDA receptors in visual processing (Aim 3). We will model ligand-gated receptor contributions to contrast responses and test whether NMDA receptors are used preferentially for encoding low versus high contrast. We will test further whether the slow kinetics of the NMDA receptor-mediated response encodes preferentially low temporal frequencies. Proposed studies will yield basic understanding of how retinal circuits and synapses process information and provide background for understanding retinal diseases that either compromise the rod pathway or involve NMDA receptor-mediated excitotoxicity.

Public Health Relevance

Proposed studies will provide background for understanding the impact of eye diseases that impair night vision (i.e., retinitis pigmentosa, congenital stationary night blindness) and eye diseases that involve cell death caused by excitotoxicity (i.e., glaucoma, ischemia). Studies will lead to a better understanding of how the retina processes visual information, which could facilitate the development of prosthetic devices for stimulating preserved retinal cells in certain forms of blindness.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Greenwell, Thomas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Bleckert, Adam; Zhang, Chi; Turner, Maxwell H et al. (2018) GABA release selectively regulates synapse development at distinct inputs on direction-selective retinal ganglion cells. Proc Natl Acad Sci U S A 115:E12083-E12090
Park, Silvia J H; Pottackal, Joseph; Ke, Jiang-Bin et al. (2018) Convergence and Divergence of CRH Amacrine Cells in Mouse Retinal Circuitry. J Neurosci 38:3753-3766
Demb, Jonathan B; Clark, Damon A (2017) Vision: These retinas are made for walkin'. Nature 546:476-477
Cui, Yuwei; Wang, Yanbin V; Park, Silvia J H et al. (2016) Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells. Elife 5:
Clark, Damon A; Demb, Jonathan B (2016) Parallel Computations in Insect and Mammalian Visual Motion Processing. Curr Biol 26:R1062-R1072
Byun, Haewon; Kwon, Soohyun; Ahn, Hee-Jeong et al. (2016) Molecular features distinguish ten neuronal types in the mouse superficial superior colliculus. J Comp Neurol 524:2300-21
Demb, Jonathan B; Singer, Joshua H (2015) Functional Circuitry of the Retina. Annu Rev Vis Sci 1:263-289
Park, Silvia J H; Borghuis, Bart G; Rahmani, Pouyan et al. (2015) Function and Circuitry of VIP+ Interneurons in the Mouse Retina. J Neurosci 35:10685-700
Stafford, Benjamin K; Manookin, Michael B; Singer, Joshua H et al. (2014) NMDA and AMPA receptors contribute similarly to temporal processing in mammalian retinal ganglion cells. J Physiol 592:4877-89
Stafford, Benjamin K; Park, Silvia J H; Wong, Kwoon Y et al. (2014) Developmental changes in NMDA receptor subunit composition at ON and OFF bipolar cell synapses onto direction-selective retinal ganglion cells. J Neurosci 34:1942-8

Showing the most recent 10 out of 27 publications