Diabetic retinopathy is the major sight-threatening disease in the American working-aged population. It affects retinal vasculature and neurons. Our recent discovery of the powerful in vivo neuroprotective effects of a ligand for sigma receptor 1 (sR1) may offer a novel approach to treatment of neuronal death in this disease. We have observed remarkable preservation of retinal structure in the Ins2Akita/+ mouse model of diabetic retinopathy when the mice were treated with (+)-pentazocine ((+)-PTZ), a highly specific sR1 ligand. sR1, initially thought to be an opiate receptor, is now known to function as a molecular chaperone that binds the ER stress protein BiP (GRP78). Factors that trigger sR1-binding are only now being identified. We have preliminary data showing that oxidative stress, which is implicated in diabetic retinopathy, induces phosphorylation of serine in sR1 and increases its binding to BiP in retinal ganglion cells. Our data show that (+)-PTZ dephosphorylates sR1 and dissociates it from BiP. We have observed increased expression of BiP (and other ER stress genes) in retinas of Ins2Akita/+ mice, the expression of which is decreased when the mice are administered (+)-PTZ. In addition, (+)-PTZ upregulates the expression of xCT in the Ins2Akita/+ mouse retina. xCT is a key protein regulating synthesis of the antioxidant glutathione. Based on these data, Aim 1 will test the hypothesis that (+)-PTZ confers neuroprotection by minimizing oxidative stress/modulating the ER stress response and that it does so by regulating sR1 phosphorylation. (+)-PTZ is considered a highly specific ligand for sR1. Thus, we predict that (+)-PTZ neuroprotection is mediated solely through its interactions with sR1;however, this has not been tested. We have established a colony of sR1 knockout mice, the availability of which will permit us to determine definitively whether sR1 is required for (+)-PTZ to confer neuroprotection.
Aim 2 will test the hypothesis that (+)-PTZ mediates its neuroprotective effects solely through activation of sR1 and absence of sR1 will increase retinal vulnerability to diabetes-induced cellular stress. In addition to these mechanistic studies, we must make progress regarding the clinical applicability of our findings. Thus far, we have administered (+)-PTZ only at diabetes onset and observed robust retinal neuroprotection in the diabetic mice. We do not know whether (+)-PTZ can confer retinal neuroprotection if administered after diabetes onset. This is relevant clinically since it would be rare that treatment of humans with retinopathy would commence at disease onset. Identification of intervention strategies that are effective following the onset of disease are of paramount importance.
Aim 3 will test the hypothesis that administration of (+)-PTZ post-onset of diabetes can prevent neuronal cell death in diabetic retinopathy. Completion of these aims will allow us to achieve our long-range goal, which is to determine whether sR1 ligands hold promise for neuroprotection in human retinopathy.

Public Health Relevance

Diabetic retinopathy is the leading cause of blindness in working-aged Americans. It is a neurovascular disease characterized by alterations of retinal vessels and death of retinal neurons. The neuronal death associated with diabetic retinopathy involves inner retinal cells, most notably ganglion cells. We have exciting data showing that the drug, (+)-pentazocine, which targets a unique protein called sigma receptor 1, has profound neuroprotective effects against ganglion cell death in a mouse model of diabetic retinopathy. The proposed project will extend these findings to understand the mechanism of this protection with the ultimate goal of determining whether (+)- pentazocine may be useful clinically for retinopathy in humans.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Shen, Grace L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Georgia Regents University
Schools of Medicine
United States
Zip Code
Zhao, Jing; Ha, Yonju; Liou, Gregory I et al. (2014) Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia. Invest Ophthalmol Vis Sci 55:3375-84
Frederick, Natalie M; Bertho, Julie; Patel, Kishan K et al. (2014) Dysregulation of system xc(-) expression induced by mutant huntingtin in a striatal neuronal cell line and in R6/2 mice. Neurochem Int 76:59-69
Tawfik, Amany; Markand, Shanu; Al-Shabrawey, Mohamed et al. (2014) Alterations of retinal vasculature in cystathionine-?-synthase heterozygous mice: a model of mild to moderate hyperhomocysteinemia. Am J Pathol 184:2573-85
Tawfik, Amany; Gnana-Prakasam, Jaya P; Smith, Sylvia B et al. (2014) Deletion of hemojuvelin, an iron-regulatory protein, in mice results in abnormal angiogenesis and vasculogenesis in retina along with reactive gliosis. Invest Ophthalmol Vis Sci 55:3616-25
Ha, Yonju; Shanmugam, Arul K; Markand, Shanu et al. (2014) Sigma receptor 1 modulates ER stress and Bcl2 in murine retina. Cell Tissue Res 356:15-27
Markand, Shanu; Tawfik, Amany; Ha, Yonju et al. (2013) Cystathionine beta synthase expression in mouse retina. Curr Eye Res 38:597-604
Al-Gayyar, Mohammed M H; Mysona, Barbara A; Matragoon, Suraporn et al. (2013) Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway. PLoS One 8:e54692
Lewerenz, Jan; Hewett, Sandra J; Huang, Ying et al. (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522-55
Gambhir, Deeksha; Ananth, Sudha; Veeranan-Karmegam, Rajalakshmi et al. (2012) GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy. Invest Ophthalmol Vis Sci 53:2208-17
Ha, Yonju; Dun, Ying; Thangaraju, Muthusamy et al. (2011) Sigma receptor 1 modulates endoplasmic reticulum stress in retinal neurons. Invest Ophthalmol Vis Sci 52:527-40

Showing the most recent 10 out of 24 publications