Visual spatial attention is a critical mental operation that allows us to selectively process only relevant information in the face of an overabundance of visual input. Understanding the underlying neural mechanisms of this phenomenon is central to our understanding of the neural basis of cognition and central to any hope of ameliorating disorders of attention in human patients. Ours and other recent work suggests that better knowledge of the interplay between visual and oculomotor mechanisms may be the key to establishing a causal neural basis of spatial attention. Thus, the long-term goal of this proposal is to understand the reciprocal interactions between oculomotor and vision mechanisms in the primate brain. This goal will be pursued via the following three aims:
Our first aim i s to test the causal role of frontal cortical saccade mechanisms in directinq covert spatial attention and in drivinq selection in visual cortex. Neuronal activity within the frontal eye field (FEF) will be inactivated pharmacologically and we will examine the effect of this on the ability of monkeys to voluntarily direct attention covertly to the affected part of space, and on the degree to which the widely observed neural correlates of attention in extrastriate area V4 are eliminated.
Our second aim i s to compare the changes in visual qain observed in extrastriate cortex during FEF microstimulation with the known effects of covert spatial attention. We will examine how the changes in V4 responses caused by subthreshold FEF microstimulation in passively fixating monkeys parallel the modulations observed in animals trained to direct covert attention voluntarily.
Our third aim i s to examine the relationship between the probability that a saccade will be made to a visual stimulus and the gain of visual cortical responses to that stimulus. We will directly manipulate saccade probability by systematically varying the parameters of FEF microstimulation and study the effect of this manipulation on the gain of visual responses in area V4. This research may provide insight into the physiological basis of disorders of attention in humans, which affect up to 5% of children in the U.S, and may also provide insight into problems of visual-oculomotor coordination, such as dyslexia, which affects approximately 10% of U.S. citizens.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
1R01EY014924-01A1
Application #
6824848
Study Section
Central Visual Processing Study Section (CVP)
Program Officer
Oberdorfer, Michael
Project Start
2004-09-20
Project End
2009-07-31
Budget Start
2004-09-20
Budget End
2005-07-31
Support Year
1
Fiscal Year
2004
Total Cost
$359,536
Indirect Cost
Name
Stanford University
Department
Biology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Chen, Xiaomo; Zirnsak, Marc; Moore, Tirin (2018) Dissonant Representations of Visual Space in Prefrontal Cortex during Eye Movements. Cell Rep 22:2039-2052
Ebitz, R Becket; Albarran, Eddy; Moore, Tirin (2018) Exploration Disrupts Choice-Predictive Signals and Alters Dynamics in Prefrontal Cortex. Neuron 97:450-461.e9
Merrikhi, Yaser; Clark, Kelsey; Albarran, Eddy et al. (2017) Spatial working memory alters the efficacy of input to visual cortex. Nat Commun 8:15041
Mueller, Adrienne; Hong, David S; Shepard, Steven et al. (2017) Linking ADHD to the Neural Circuitry of Attention. Trends Cogn Sci 21:474-488
Ebitz, R Becket; Moore, Tirin (2017) Selective Modulation of the Pupil Light Reflex by Microstimulation of Prefrontal Cortex. J Neurosci 37:5008-5018
Sridharan, Devarajan; Steinmetz, Nicholas A; Moore, Tirin et al. (2017) Does the Superior Colliculus Control Perceptual Sensitivity or Choice Bias during Attention? Evidence from a Multialternative Decision Framework. J Neurosci 37:480-511
Hartmann, Till S; Zirnsak, Marc; Marquis, Michael et al. (2017) Two Types of Receptive Field Dynamics in Area V4 at the Time of Eye Movements? Front Syst Neurosci 11:13
Engel, Tatiana A; Steinmetz, Nicholas A; Gieselmann, Marc A et al. (2016) Selective modulation of cortical state during spatial attention. Science 354:1140-1144
Okun, Michael; Steinmetz, Nicholas; Cossell, Lee et al. (2015) Diverse coupling of neurons to populations in sensory cortex. Nature 521:511-515
Hu, Meng; Clark, Kelsey L; Gong, Xiajing et al. (2015) Copula regression analysis of simultaneously recorded frontal eye field and inferotemporal spiking activity during object-based working memory. J Neurosci 35:8745-57

Showing the most recent 10 out of 39 publications