Wavefront aberrations in the eye's optics degrade vision. These aberrations, including many higher order aberrations that are not corrected by conventional spectacles, are especially severe in patients with keratoconus and in patients who have had penetrating keratoplasty. Accurate measurement and correction of these higher order aberrations could result in substantial improvements in vision. However, little wave aberration data can be obtained from patients with these conditions, primarily because existing wavefront sensors have too small a dynamic range to measure the large aberrations in these eyes. Moreover, even if measurements were available, there are few available therapeutic alternatives. The research objectives of this bioengineering research project are to develop a robust wavefront sensor, with a large dynamic range, that will reliably diagnose the wave aberrations in highly aberrated eyes, and to develop a customized contact lens that can compensate for most of these aberrations. The key to expanding the dynamic range of the wavefront sensor is the use of a translational plate that increases spacing between wavefront sensing spots. The key to developing the contact lens is the use of high-power laser ablation of the contact lens based on the measurements with the wavefront sensor.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
1R01EY014999-01
Application #
6670855
Study Section
Special Emphasis Panel (ZRG1-MDCN-1 (05))
Program Officer
Fisher, Richard S
Project Start
2003-09-02
Project End
2007-08-31
Budget Start
2003-09-02
Budget End
2004-08-31
Support Year
1
Fiscal Year
2003
Total Cost
$261,825
Indirect Cost
Name
University of Rochester
Department
Ophthalmology
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D et al. (2018) Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method. Comput Methods Biomech Biomed Engin 21:287-296
Sabesan, Ramkumar; Barbot, Antoine; Yoon, Geunyoung (2017) Enhanced neural function in highly aberrated eyes following perceptual learning with adaptive optics. Vision Res 132:78-84
Ghosh, Atanu; Zheleznyak, Len; Barbot, Antoine et al. (2017) Neural adaptation to peripheral blur in myopes and emmetropes. Vision Res 132:69-77
Marcos, Susana; Werner, John S; Burns, Stephen A et al. (2017) Vision science and adaptive optics, the state of the field. Vision Res 132:3-33
Zheleznyak, Len; Barbot, Antoine; Ghosh, Atanu et al. (2016) Optical and neural anisotropy in peripheral vision. J Vis 16:1
Dieter, Kevin C; Melnick, Michael D; Tadin, Duje (2016) Perceptual training profoundly alters binocular rivalry through both sensory and attentional enhancements. Proc Natl Acad Sci U S A 113:12874-12879
Zheleznyak, Len; Alarcon, Aixa; Dieter, Kevin C et al. (2015) The role of sensory ocular dominance on through-focus visual performance in monovision presbyopia corrections. J Vis 15:17
Plaza-Puche, Ana B; AliĆ³, Jorge L; MacRae, Scott et al. (2015) Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses. J Refract Surg 31:300-7
Applegate, Ray; Atchison, David; Bradley, Arthur et al. (2014) Wavefront refraction and correction. Optom Vis Sci 91:1154-5
Zheleznyak, Len; Jung, HaeWon; Yoon, Geunyoung (2014) Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration. Invest Ophthalmol Vis Sci 55:70-7

Showing the most recent 10 out of 32 publications