Glaucoma is a major cause of blindness in the world and is characterized by a loss of retinal ganglion cells. The disease is frequently associated with elevated intraocular pressure, but it is unclear how this elevation leads to the death of ganglion cells. The current proposal is based upon the novel hypothesis that elevated intraocular pressure triggers the release of ATP. This released ATP can activate P2X7 ATP receptors on retinal ganglion cells, leading to activation of NMDA receptors and excitotoxic cell death. Alternatively, the released ATP can be converted into adenosine by ecto-enzymes and stimulate the A3 receptor for adenosine and protect ganglion cells. Three approaches will be used to test this hypothesis. First, the neuroprotective capacity of rat A3 receptors will be investigated pharmacologically, as this represents the most straightforward opportunity for treatment. Receptor identity will be confirmed by amplifying mRNA message from fluorescently-labeled retinal ganglion cells isolated using Laser-Capture Microdissection. Secondly, the interaction between P2X7 and NMDA receptor channels will be explored by examining the ability of NMDA antagonists to prevent the cell death caused by P2X7 stimulation. The mechanism underlying this interaction will be examined by measuring the effect of P2X7 stimulation on glutamate efflux, and determining the permeability of the P2X7 channel itself to glutamate. Indirect pathways for interaction will also be explored, investigating whether P2X7 receptor stimulation depolarizes cells sufficiently to open NMDA channels or trigger a vesicular release of glutamate. Finally, the effect of increased pressure on ATP release will be tested using in vitro and in vivo models. The ability of elevated pressure to trigger ATP release from dissociated rat retinal cells will be confirmed, and the effect of changing the magnitude and duration of this pressure will be investigated. The hypothesis will be tested with a rat model of experimental glaucoma by correlating the magnitude and duration of intraocular pressure elevation with levels of ATP and regulating enzymes. Together this research will provide a new explanation for ganglion cell death in glaucoma and suggests several new approaches to prevent this death.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY015537-02
Application #
7070522
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Liberman, Ellen S
Project Start
2005-06-01
Project End
2009-05-31
Budget Start
2006-06-01
Budget End
2007-05-31
Support Year
2
Fiscal Year
2006
Total Cost
$331,108
Indirect Cost
Name
University of Pennsylvania
Department
Physiology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ma, Zhongming; Taruno, Akiyuki; Ohmoto, Makoto et al. (2018) CALHM3 Is Essential for Rapid Ion Channel-Mediated Purinergic Neurotransmission of GPCR-Mediated Tastes. Neuron 98:547-561.e10
Beckel, Jonathan M; Gómez, Néstor Más; Lu, Wennan et al. (2018) Stimulation of TLR3 triggers release of lysosomal ATP in astrocytes and epithelial cells that requires TRPML1 channels. Sci Rep 8:5726
Ventura, Ana Lucia Marques; Dos Santos-Rodrigues, Alexandre; Mitchell, Claire H et al. (2018) Purinergic signaling in the retina: From development to disease. Brain Res Bull :
Lu, Wennan; Gómez, Néstor M; Lim, Jason C et al. (2018) The P2Y12 Receptor Antagonist Ticagrelor Reduces Lysosomal pH and Autofluorescence in Retinal Pigmented Epithelial Cells From the ABCA4-/- Mouse Model of Retinal Degeneration. Front Pharmacol 9:242
Gómez, Néstor Más; Lu, Wennan; Lim, Jason C et al. (2018) Robust lysosomal calcium signaling through channel TRPML1 is impaired by lysosomal lipid accumulation. FASEB J 32:782-794
Ramachandra Rao, Sriganesh; Pfeffer, Bruce A; Más Gómez, Néstor et al. (2018) Compromised phagosome maturation underlies RPE pathology in cell culture and whole animal models of Smith-Lemli-Opitz Syndrome. Autophagy 14:1796-1817
Albalawi, Farraj; Lu, Wennan; Beckel, Jonathan M et al. (2017) The P2X7 Receptor Primes IL-1? and the NLRP3 Inflammasome in Astrocytes Exposed to Mechanical Strain. Front Cell Neurosci 11:227
Lu, Wennan; Albalawi, Farraj; Beckel, Jonathan M et al. (2017) The P2X7 receptor links mechanical strain to cytokine IL-6 up-regulation and release in neurons and astrocytes. J Neurochem 141:436-448
Workman, Alan D; Carey, Ryan M; Chen, Bei et al. (2017) CALHM1-Mediated ATP Release and Ciliary Beat Frequency Modulation in Nasal Epithelial Cells. Sci Rep 7:6687
Beckel, Jonathan M; Lu, Wennan; Civan, Mortimer M et al. (2016) Treatment of Retinal Disorders with Purinergic Drugs: Beyond Receptors. J Ocul Pharmacol Ther 32:488-489

Showing the most recent 10 out of 47 publications