Diabetic retinopathy is a sight threatening disease without effective therapeutic options. The diabetic metabolic insult leading to retinal vascular degeneration is proposed to involve the initial endothelial cell damage due to low-grade chronic inflammation;that is then inadequately repaired due to compromised availability and functionality of bone marrow derived endothelial progenitor cells (EPCs). We have previously demonstrated that bone marrow pathology with EPC dysfunction precedes and is necessary for retinal vascular degeneration in diabetes. We propose that a molecular metabolic link connecting both the initial inflammation in the retina and the dysfunctional EPCs involves downregulation of ?-3 polyunsaturated fatty acids (PUFA) with concomitant activation of the central enzyme of sphingolipid signaling, acid sphingomyelinase (ASM). Our recent study demonstrated a significant decrease in total 3-PUFAs, especially DHA, that was tightly coupled with increased inflammatory changes in the diabetic retina. DHA supplementation corrected the diabetes induced decrease in migration and proliferation in EPCs, and prevented diabetes induced retinal inflammation and retinal vessel loss. These findings fit with other studies showing potent anti-inflammatory properties of omega-3 PUFAs. Dysregulation of sphingolipid metabolism is believed to play a major role in insulin resistance, obesity and inflammation. We identified activation of ASM, the enzyme converting sphingomyelin into pro- inflammatory and pro-apoptotic ceramide, as a key element activated by diabetes in both EPCs and retinal vasculature. We found that DHA supplementation reversed increases in ASM activity in diabetic EPCs and retinal endothelial cells. ASM-/- animals were protected from vascular degeneration in retinopathy models. Based on these data we hypothesize that DHA supplementation improves the outcomes of diabetic retinopathy by: 1) preventing endothelial cell activation and subsequent damage in the retina;and 2) through improving retinal vascular repair by correcting the function of bone marrow derived EPCs. We propose that the beneficial effects of DHA are due, at least in part, to inhibition of ASM activity in retinal endothelial cells and bone marrow derived EPCs. This hypothesis will be tested in two Specific Aims.
Aim 1 will address retinal endothelial specific effects and Aim 2 will address EPC specific effects of ASM in diabetes. The proposed studies will assess the potential of ASM as a target for the treatment of diabetic retinopathy. Moreover, we will identify the extend of therapeutic potential that can be achieve by retinal-specific and bone-marrow specific inhibition of ASM to determine the best therapeutic strategies.

Public Health Relevance

Dysregulation of sphingolipid metabolism is becoming recognized as an important partof diabetic dyslipidemia playing a major role in insulin resistance; obesity andinflammation; and the role of sphingolipid metabolism in the retina is beginning toemerge. Our preliminary studies demonstrate that diets supplemented with 3 PUFA-rich effectively corrected retinal pathology in both type 1 and type 2 diabetes animalmodels through; at least in part; inhibition of acid sphingomyelinase; the major enzymeat the top of sphingolipid pathway. This proposal will address the role of acidsphingomyelinase activation in the pathogenesis of diabetic retinopathy and will providenovel therapeutic targets for this sight threatening disease.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Shen, Grace L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Michigan State University
Schools of Osteopathic Medicine
East Lansing
United States
Zip Code
Kady, Nermin; Yan, Yuanqing; Salazar, Tatiana et al. (2017) Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34+ circulating angiogenic cells isolated from diabetic individuals is associated with dysfunctional retinal vasculature and vascular repair process in diabetes. J Clin Lipidol 11:694-703
Blanchard, Gary J; Busik, Julia V (2017) Interplay between Endothelial Cell Cytoskeletal Rigidity and Plasma Membrane Fluidity. Biophys J 112:831-833
Hammer, Sandra S; Beli, Eleni; Kady, Nermin et al. (2017) The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor. EBioMedicine 22:181-190
Hammer, Sandra S; Busik, Julia V (2017) The role of dyslipidemia in diabetic retinopathy. Vision Res 139:228-236
Mize, Hannah E; Blanchard, G J (2016) Interface-mediation of lipid bilayer organization and dynamics. Phys Chem Chem Phys 18:16977-85
Chakravarthy, Harshini; Navitskaya, Svetlana; O'Reilly, Sandra et al. (2016) Role of Acid Sphingomyelinase in Shifting the Balance Between Proinflammatory and Reparative Bone Marrow Cells in Diabetic Retinopathy. Stem Cells 34:972-83
Wang, Qi; Navitskaya, Svetlana; Chakravarthy, Harshini et al. (2016) Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy. EBioMedicine 11:138-150
Chakravarthy, Harshini; Beli, Eleni; Navitskaya, Svetlana et al. (2016) Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy. PLoS One 11:e0146829
Busik, Julia V; Grant, Maria B (2015) Wnting out ocular neovascularization: using nanoparticle delivery of very-low density lipoprotein receptor extracellular domain as Wnt pathway inhibitor in the retina. Arterioscler Thromb Vasc Biol 35:1046-7
Bennett, Lea D; Brush, Richard S; Chan, Michael et al. (2014) Effect of reduced retinal VLC-PUFA on rod and cone photoreceptors. Invest Ophthalmol Vis Sci 55:3150-7

Showing the most recent 10 out of 26 publications